400+ attendees, 50+ speakers and 20+ sponsors are gathering 8-9 June in Cape Town for the New Energy Update series of conferences, comprising of CSP Today South Africa, PV Insider South Africa and Wind Energy Update South Africa
Custom Search

Money Transfers Job Africa Map Weather

Tag Archive | "Energy"

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Aung San Suu Kyi to attend the 2nd Myanmar Oil and Gas Summit

Posted on 21 May 2013 by Africa Business

Aung San Suu Kyi gives speech to supporters at Hlaing Thar Yar Township in Yangon, Myanmar on 17 November 2011. Author Htoo Tay Zar. Source: Wikipedia.org

 

It is with great pleasure that we are able to announce that Daw Aung San Suu Kyi, Nobel Prize laureate and Chairperson of the National League for Democracy will be attending The 2nd Myanmar Oil and Gas Summit, Yangon, 17-18 June.

The conference and exhibition which is endorsed by the ASEAN Council on Petroleum (ASCOPE) will also be attended by a delegation from the Myanmar Oil and Gas Enterprise (MOGE), local and international oil companies and service providers form throughout the world.

To receive the latest event agenda as well as registration details, please reply to this email and my colleague will be in touch. This is the largest oil and gas event which takes place in Myanmar and we do expect it to sell out again.

SPEAKERS INCLUDE:

Ms Cho Cho Wynn, Deputy Director General, MINISTRY OF NATIONAL PLANNING & ECONOMIC DEVELOPMENT / DIRECTORATE OF INVESTMENT AND COMPANY ADMINISTRATION (DICA)

VICTORINO BALA, Secretary in Charge, ASEAN COUNCIL ON PETROLEUM (ASCOPE)

U KYAW SOE, Exploration Geologist, PARAMI ENERGY DEVELOPMENT CO LTD

DR DEVA GHOSH, Professor in Geophysics, Universiti TEKNOLOGI PETRONAS,

U Kyaw Kyaw Hlaing, Chairman, SMART GROUP OF COMPANIES

U LYNN MYINT, Vice President, NORTH PETRO-CHEM CORPORATION (MYANMAR), Former Chief Geologist, MOGE

U AUNG MIN, Freelance Consultant, ASIA PIONEER PETROLEUM EXPLORATION TEAM, FORMER MOGE

U AUNG MYAT KYAW, Secretary Geotechnical Committee MYANMAR GEOSCIENCES SOCIETY

DR ANDRZEJ BOLESTA, Economic Counsellor, EMBASSY OF THE REPUBLIC OF POLAND IN BANGKOK

CHRIS FAULKNER, CEO, BREITLING OIL & GAS

JOHN MCCLENAHAN, Ashurst, PARTNER

JAMES FINCH, DFDL Mekong Group, PARTNER

Kenneth Stevens, Managing Partner, LEOPARD CAPITAL

Sebastian Pawlita, Partner, POLASTRI WINT & PARTNERS

DR EULOGE ANICET NKOUNKOU, Minerals on Energy, INTERNATIONAL LAW OF PETROLEUM EXPERT

Please visit: http://www.myanmarsummit2013.com/

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

DC Finance’s CEO will be visiting NYC from June 17thto promote the East Coast Family Office & Wealth Management Conference and the firm’s institutional investment, corporate finance, going public and family office events in Israel. Available for meetings

Posted on 21 May 2013 by Africa Business

 

DC Finance, the manager of one of the world’s largest Family Office events, ( www.israelwealth.com), is proud to present the East Coast’s top HNWI & SFOs wealth management event – The Annual East Coast Family Office & Wealth Management Conference, OCT 2nd, at the Union League Club, New York City ( www.nyc-wealth.com).

We are currently seeking firms who wish to support and join this 1st tier event. Mr Denny Chared, DC Finance’s CEO, will be more than happy to meet firms who may be intrested in meeting our target audiance of SFOs and HNWI.

The event will bring together 200 UHNWI, HNWI and SFOs with an average net worth of $400 million, with 50 of the best speakers in the fields of oil and gas investments, real estate, homeland security, high tech investments, philanthropy, private family banks, families in business, direct investing, family office, estate planning, trusts and other various investment alternatives.

Our current confirmed speakers lisr include: Dr. Yossi Vardi, Mr. Martin S. Indyk, vice president and director of the Foreign Policy Program at the Brookings Institution in Washington D.C., and former U.S. ambassador to Israel Mr. Howard Cooper , CEO, Cooper Family Office | Mr. David Sable , Global CEO, Y&R | Mr, Tewodros Ashenafi ,  CEO, SouthWest Energy Ltd, Ms. Kay Koplovitz , Founder, USA Networks and Chairman and CEO of Koplovitz & Co. LLC. Kay Koplovitz | Mr. Dror Berman , Founding Managing Partner, Innovation Endeavors (The Eric Schmidt Investment Fund), Ms. Wendy Craft , Executive Vice President and General Counsel, Fulcrum Equities | Mr. Lowell Sands , Rosewood Resources | Mr. Angelo J. Robles, CEO, Family Office Association Mr. Munib R. Masri, Chairman, Engineering and Development Group | Mr. David Gorman , Americas Advisor, The Table Club | Ms. Candice Beaumont , Managing Director, L. Investments | Mr. Harold F. “Rick” Pitcairn , II, CFA, CIO, Pitcairn and Chairman, Wigmore Association | Mr. Steve Oyer , Partner, Grail Partners | Mr. Ira Perlmuter , Head of Family Office Direct Investing, T5 Equity Partners| Mr. Nirmal Saverimuttu , Principal, Virgin Group | Mr. Andy Unanue , Managing Partner, AUA Private Equity Partners | Ms. Karen Wawrzaszek , Managing Director, Pitcairn | Mr. Warner King Babcock , Chairman and CEO, AM Private Enterprises, Inc. | Ms. Raya Strauss Bendror , President and Co-Owner, Strauss Investment, The Strauss Family | Ms. Nava Michael Tsabari , Academic Director, Family Business Program, Lahav-Executive Education, Recanati Business School, Faculty of Management Tel Aviv University, The Strauss Family | Mr. Guy Schory , Head of New Ventures, eBay | Mr. Shimon Eckhouse , Co-founder and Chairman of the Board, Syneron Medical |  Mr. Jamie McLaughlin , Owner, J. H. McLaughlin & Co., LLC |   Mr. Louis Hanna , Corigin Family Office | Ms. Kay Koplovitz , Founder, USA Network | Mr. Kent M. Swig , President, Swig Equities, LLC | Ms. Steffi Claiden , Founder/Editor-in-Chief, Family Office Review | Mr. Daniel Shakhani , CEO, RDS Capital

 

 

Other events:The trip also supports The 2014 institutional investment conference , March 2014, ( www.tlvii.com ), The Israeli Family Office & Wealth Management Conference, June 2013, ( www.israelwealth.com ), the “Family Wealth” magazine and advisors sourcebook, The Annual Kibbutz Industries Financial Conference, Sep 10th 2013, The Annual Going Public and Raising Capital Abroad Conference Oct 9th 2013 and Israel’s Annual Corporate Finance Conference, Nov 22nd 2013 ( www.israel-finance.com( .

Firms with an interest in meeting our target audience are welcome to reply to this email and we will do our best to schedule a meeting. Please be advised that due to a busy schedule not all requests may be fulfilled.

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Unreliable Power Supply Creates Huge Demand for Non-renewable Inverters, Finds Frost & Sullivan

Posted on 18 May 2013 by Africa Business

Cost competitiveness vital to expand in developing markets

MOUNTAIN VIEW, Calif. /PRNewswire/ — The global non-renewable inverter market grew steadily on the back of rising demand for reliable power and the lack of stable power infrastructure in many regions of the world. Higher disposable incomes and greater affordability in developing regions such as Latin America, as well as parts of Africa and South Asia, encourage the adoption of power inverters, especially in residential markets.

New analysis from Frost & Sullivan’s (http://www.powersupplies.frost.com) Analysis of the Global Non-renewable Inverter Market research finds the market earned revenue of approximately $1.94 billion in 2012 and estimates this to reach $2.34 billion in 2018.

For more information on this research, please email Britni Myers , Corporate Communications, at britni.myers@frost.com, with your full name, company name, job title, telephone number, company email address, company website, city, state and country.

“The need for power reliability stimulates demand for power inverter and inverter/chargers, as they are employed as part of a back-up power system involving a battery,” said Frost & Sullivan Energy and Environment Senior Industry Analyst Anu Elizabeth Cherian. “The manufacturing and commercial sectors’ increased awareness and proactive protective measures such as employing adequate back-up resources to manage business more efficiently gives a significant boost to the market’s prospects.”

The market will also gain from the escalating use of electronic equipment in boats, cars, trucks, ambulances and recreational vehicles. Power inverters and inverter chargers can meet business travelers’ or vacationers’ demand for connectivity on the go as well.

While power inverters are establishing a foothold in the power industry, the gradual pace of economic recovery and restrained spending environment are stymieing inverter manufacturers’ efforts to expand. Further, the slowdown in infrastructural build-outs in telecommunications and investments makes customers cautious about investing in inverters.

“Inverter manufacturers could attempt to offset the price issue by offering enhanced features for the premium products or lowering prices,” noted Cherian. “We know that without a solid solution, power quality issues will continue to persist.  This improved awareness of the need to be well prepared for power outages bolsters the power inverter market.”

Analysis of the Global Non-renewable Inverter Market is part of the Energy and Environment Growth Partnership Service program. Frost & Sullivan’s related research services include: Analysis of the Mexican Distributed Power Generation Market, Asia-Pacific Rental Power Market, Bangladesh Uninterruptible Power Supply Market, and Critical Energy Infrastructure Protection in Europe. All research services included in subscriptions provide detailed market opportunities and industry trends evaluated following extensive interviews with market participants.

Connect with Frost & Sullivan on social media, including Twitter, Facebook, SlideShare, and LinkedIn, for the latest news and updates.

About Frost & Sullivan

Frost & Sullivan, the Growth Partnership Company, works in collaboration with clients to leverage visionary innovation that addresses the global challenges and related growth opportunities that will make or break today’s market participants.

Our “Growth Partnership” supports clients by addressing these opportunities and incorporating two key elements driving visionary innovation: The Integrated Value Proposition and The Partnership Infrastructure.

  • The Integrated Value Proposition provides support to our clients throughout all phases of their journey to visionary innovation including: research, analysis, strategy, vision, innovation and implementation.
  • The Partnership Infrastructure is entirely unique as it constructs the foundation upon which visionary innovation becomes possible. This includes our 360 degree research, comprehensive industry coverage, career best practices as well as our global footprint of more than 40 offices.

For more than 50 years, we have been developing growth strategies for the global 1000, emerging businesses, the public sector and the investment community. Is your organization prepared for the next profound wave of industry convergence, disruptive technologies, increasing competitive intensity, Mega Trends, breakthrough best practices, changing customer dynamics and emerging economies?

Contact Us:     Start the discussion

Join Us:           Join our community

Subscribe:       Newsletter on “the next big thing”

Register:         Gain access to visionary innovation

Analysis of the Global Non-renewable Inverter Market
N839-27

Contact:
Britni Myers
Corporate Communications – North America
P: 210.477.8481
F: 210.348.1003
E: britni.myers@frost.com
Twitter: @Frost_Sullivan
Facebook: Frost & Sullivan

http://www.frost.com

SOURCE Frost & Sullivan

 

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Lithium Market Becoming More Reliant on Batteries for Continued Strong Demand Growth

Posted on 18 May 2013 by Africa Business

Rise in Consumption and Future Demand Driven by Lithium-ion Batteries

Roskill estimates that rechargeable batteries accounted for 27% of global lithium consumption in 2012, up from 15% in 2007 and 8% in 2002. This end-use was responsible for 44% of the net increase in lithium consumption over the last ten years, and 70% over the last five years. In the base-case growth scenario it is expected to contribute 75% of the growth in forecast demand to 2017, when total demand for lithium is expected to reach slightly over 238,000t lithium carbonate equivalent (LCE).

Other end-uses, including glass-ceramics, greases and polymers, have also shown high rates of growth, but are predicted to moderate over the next five years as emerging economy growth slows. The lithium industry is therefore becoming more reliant on rechargeable batteries to sustain high rates of future demand growth. In addition, in the period to 2017 Roskill forecasts that the main market driver for lithium-ion batteries will gradually switch from portable consumer electronics to electric vehicles, especially hybrid variants.

Reflecting the concentration of lithium-ion battery manufacturers and associated cathode material producers in China, Japan and South Korea, the East Asia region has become an increasingly important consumer of lithium products over the last decade. In 2012, East Asia accounted for 60% of total global consumption with Europe accounting for a further 24% and North America 9%.

Growing Supply-side Pressure is Predicted to Stall Further Lithium Price Rises

Roskill’s analysis suggests that the price of technical-grade lithium carbonate, the main product produced and consumed in the lithium market, recovered some of its global economic downturn losses as the market tightened in 2012, averaging US$5,300/t CIF, up 15% from 2010. This is below the 2007 peak of US$6,500/t, but well above the US$2,000-3,000/t levels seen in the early 2000s.

Lithium extraction, which totalled over 168,000t LCE in 2012, is undertaken predominately in Australia, Chile, Argentina and China, with roughly half of lithium output from hard rock sources and half from brine. Production is dominated by Talison Lithium in Australia, SQM and Rockwood Lithium in Chile, and FMC in Argentina. Just over two-thirds of lithium minerals extracted in Australia are processed into downstream chemical products in China, where producers such as Tianqi Lithium (who recently acquired Talison to secure a captive supply of mineral feedstock) operate mineral conversion plants.

Galaxy Resources commissioned a new 17,000tpy LCE mineral conversion plant in China in 2012. Canada Lithium is in the process of commissioning a 20,000tpy LCE plant in Quebec and several existing Chinese mineral conversion plants are also expanding capacity. FMC has increased brine-based processing capacity by a third in Argentina, while nearby Orocobre is also constructing a new brine-based operation due to be completed in 2014. In addition, Rockwood Lithium plans to complete a 20,000tpy LCE expansion in Chile in 2014. Combined, this additional capacity totals just under 100,000tpy LCE, enough to meet forecast demand to 2017.

As the opening of new and expanded capacity is concentrated over the next two years, Roskill forecasts that the lithium market could witness increased competition and supply-side pressure on pricing, with prices for technical-grade lithium carbonate potentially falling back to around US$5,000/t CIF in 2014.

Lithium: Market Outlook to 2017 (12th edition)is available at a price of £4900 / US$7900 / €6200 from Roskill Information Services Ltd, 54 Russell Road, London SW19 1QL ENGLAND.

Tel: +44-(0)20-8417-0087. Fax +44-(0)20-8417-1308.

Email: info@roskill.co.uk Web: http://www.roskill.com/lithium

Note to editors

The report contains 426 pages, 245 tables and 99 figures. It provides a detailed review of the industry, with subsections on the activities of the leading producing companies. It also analyses consumption, trade and prices.

Table of Contents

Page

1.         Summary    1

2.         Lithium Mineralogy, Occurrences and Reserves    10

2.1        Occurrence of lithium    10

2.1.1      Lithium minerals    10

2.1.2      Lithium clays    12

2.1.3      Lithium brines    12

2.2        Lithium reserves    14

3.         Lithium mining and processing    16

3.1        Extraction and processing of lithium brines    17

3.1.1      Other methods of brine extraction    20

3.2        Mining and processing of lithium minerals    21

3.3        Processing lithium mineral concentrates to lithium compounds    23

3.4        Processing lithium bearing clays into lithium compounds    26

3.5        Lithium compounds and chemicals    27

3.6        Production costs    30

4.         Production of lithium    34

4.1        Lithium production by source    35

4.1.1      Production of Lithium Minerals    37

4.1.2      Production from Lithium Brines    39

4.1.3      Production of lithium compounds from mineral conversion    41

4.1.4      Production of downstream lithium chemicals    43

4.2        Outlook for production capacity of lithium to 2017    44

4.2.1      Outlook for production capacity of lithium minerals    45

4.2.2      Outlook for lithium production capacity from brines    48

4.2.3      Outlook on lithium compound production from mineral conversion    51

4.3        Forecast production of lithium to 2017    52

5.         Review of lithium producing countries    55

5.1        Afghanistan 55

5.2        Argentina 56

5.2.1      FMC Litihum (MineradelAltiplano S.A.)    58

5.2.2      ADY Resources    59

5.2.3      Lithium Americas    61

5.2.4      Galaxy Resources (Lithium 1)    66

5.2.4.1    Sal de Vida Project    66

5.2.4.2    James Bay Hard-rock Lithium Project    68

5.2.5      Orocobre Ltd.    69

5.2.5.1    Salar de Olaroz    71

5.2.5.2    Salinas Grandes (Cangrejillo)    74

5.2.5.3    Guayatoyoc Project    74

5.2.5.4    Cauchari Project    75

5.2.6      Rodinia Lithium Inc.    76

5.2.6.1    Rodinia Lithium USA 78

5.2.7      Marifil Mines Ltd.    78

5.2.8      International Lithium Corporation    79

5.2.9      Other prospects for Lithium Production    79

5.3        Australia 80

5.3.1      Talison Lithium    82

5.3.1.1    Resources and Reserves    82

5.3.1.2    Production    85

5.3.1.3    Products    86

5.3.2      Galaxy Resources Ltd.    87

5.3.2.1    Reserves and Resources    88

5.3.2.2    Production    90

5.3.3      Reed Resources Ltd.    91

5.3.4      Altura Mining Ltd.    92

5.3.5      Artemis Resources    93

5.3.6      Amerilithium    93

5.3.7      Reward Minerals    93

5.4        Austria 93

5.5        Belgium 94

5.6        Bolivia 96

5.6.1      Salar de Uyuni 97

5.6.2      Salar de Coipasa    99

5.6.3      New World Resource Corp.    99

5.7        Brazil 100

5.7.1      CompanhiaBrasileira de Litio    102

5.7.2      Arqueana de Minérios e Metais Ltda.    103

5.7.3      Advance Metallurgical Group (AMG)    104

5.8        Canada 104

5.8.1      Lithium resources in Canada 105

5.8.2      Canadian trade in lithium    107

5.8.3      Past producers of lithium in Canada 108

5.8.3.1    Tantalum Mining Corp. of Canada Ltd. (TANCO)    108

5.8.4      Potential new producers of lithium in Canada 109

5.8.4.1    Canada Lithium Corp.    109

5.8.4.2    Nemaska Lithium    112

5.8.4.3    Avalon Rare Metals Inc.    115

5.8.4.4    Perilya Limited    116

5.8.4.5    Rock Tech Lithium Inc.    117

5.8.4.6    Critical Elements Corporation    120

5.8.4.7    Glen Eagle Resources Inc.    120

5.8.4.8    Aben Resources Ltd.    121

5.8.4.9    Toxco Inc. Canada 122

5.8.4.10   Other Canadian Lithium Projects    122

5.9        Chile 126

5.9.1      Chilean lithium reserves    127

5.9.2      Chilean lithium production    127

5.9.3      Special Lithium Operations Contracts (CEOLs)    128

5.9.4      SociedadQuímica y Minera    129

5.9.4.1    Reserves and Resources    130

5.9.4.2    Production    131

5.9.4.3    Products    132

5.9.4.4    Markets    134

5.9.4.5    Exports    135

5.9.5      Rockwood Litihum (Salar de Atacama and La Negra Plant)    136

5.9.6      Simbalik Group    138

5.9.7      Li3 Energy Inc.    139

5.9.7.1    Maricunga Property    139

5.9.7.2    Li3 Energy Peruvian Projects    141

5.9.8      First Potash Corp.    141

5.9.9      CODELCO    142

5.9.10 Mammoth Energy Group Inc.    142

5.9.11 Lomiko Metals Inc.    143

5.9.12 Errázuriz Lithium    143

5.9.13 Exports of litihum from Chile 143

5.10       China 146

5.10.1     Chinese reserves of lithium    147

5.10.1.1   Lithium Mineral Reserves    147

5.10.1.2   Lithium Brine Reserves    148

5.10.2     Production of lithium    149

5.10.2.1   Mineral Production    150

5.10.2.2   Brine Production    151

5.10.2.3   Lithium Chemicals and Metal Production    152

5.10.3     Chinese trade in lithium    155

5.10.4     Chinese lithium brine producers    157

5.10.4.1   Tibet Lithium New Technology Development Co. Ltd.    157

5.10.4.2   Qinghai CITIC Guoan Technology Development Co. Ltd.    159

5.10.4.3   Qinghai Salt Lake Industry Co. Ltd.    160

5.10.4.4   Qinghai Lanke Lithium Industry Co. Ltd.    161

5.10.4.5   Tibet Sunrise Mining Development Ltd.    162

5.10.4.6   China MinMetals Non-Ferrous Metals Co. Ltd    163

5.10.5     Chinese lithium mineral producers    163

5.10.5.1   Fujian Huamin Import & Export Co. Ltd.    163

5.10.5.2   YichunHuili Industrial Co. Ltd.    164

5.10.5.3   GanZiRongda Lithium Co., Ltd.    164

5.10.5.4   Sichuan HidiliDexin Mineral Industry    165

5.10.5.5   Xinjiang Non-Ferrous Metals (Group) Ltd.    166

5.10.6     Chinese lithium mineral producers with mineral conversion capacity    166

5.10.6.1   Jiangxi Western Resources Lithium Industry    166

5.10.6.2   Sichuan Aba Guangsheng Lithium Co. Ltd.    167

5.10.6.3   Minfeng Lithium Co. Ltd.    167

5.10.6.4   Sichuan Ni&CoGuorun New Materials Co. Ltd.    168

5.10.7     Chinese mineral conversion plants    169

5.10.7.1   Sichuan Tianqi Lithium Shareholding Co. Ltd.    169

5.10.7.2   Galaxy Resources (Jiangsu Lithium Carbonate Plant)    171

5.10.7.3   General Lithium (Haimen) Corp.    172

5.10.7.4   China Non-Ferrous Metal Import & Export Xinjiang Corp.    173

5.10.7.5   Sichuan State Lithium Materials Co. Ltd.    174

5.10.7.6   Jiangxi Ganfeng Lithium Co. Ltd.    174

5.10.7.7   Sichuan Chenghehua Lithium Technology Co. Ltd.    176

5.10.8     Chinese lithium chemical producers    176

5.10.9     Specialist lithium bromide producers    177

5.10.10 Specialist lithium metal producers    178

5.11       Czech Republic 179

5.12       Democratic Republic of Congo (DRC)    179

5.13       Finland 180

5.13.1     KeliberOy    180

5.13.2     Nortec Minerals Corp.    181

5.13.3     Leviäkangas Deposit    182

5.13.4     Syväjärvi Deposit    182

5.14       France 182

5.15       Germany 184

5.15.1     Rockwood Lithium (Langelsheim Plant)    185

5.15.2     Helm AG    185

5.15.3     Lithium exploration in Germany 185

5.16       Greece 186

5.17       India 186

5.17.1     FMC India Private Ltd.    188

5.17.2     Rockwood Lithium    188

5.18       Ireland 189

5.19       Israel 189

5.20       Japan 190

5.21       Kazakhstan 192

5.22       Mali 193

5.23       Mexico 193

5.23.1     LitioMex S.A. de C.V. (PieroSutti S.A. de C.V.)    193

5.23.2     First Potash Corp. (Mexico)    195

5.23.3     Bacanora Minerals Ltd.    195

5.24       Mongolia 196

5.25       Mozambique 196

5.26       Namibia 197

5.27       Netherlands 198

5.28       Portugal 199

5.28.1     SociedadMineira de Pegmatites    200

5.29       Russia 200

5.29.1     Russian Lithium Reserves and Resources    201

5.29.2     Russian Lithium Production    202

5.29.2.1   JSC Chemical and Metallurgical Plant    202

5.29.2.2   JSC Novosibirsk Chemical Concentration Plant    203

5.29.3     Russian Imports and Exports of Lithium    204

5.30       Serbia    205

5.31       South Africa 206

5.32       South Korea 206

5.33       Spain 207

5.33.1     Minera Del Duero 208

5.33.2     Solid Resources Ltd.    209

5.34       Taiwan 209

5.35       Tajikistan 210

5.36       Turkey 210

5.37       UK    211

5.38       Ukraine 212

5.39       USA 212

5.39.1     Trade in lithium to/from the USA 213

5.39.2     Rockwood Lithium (Chemetall Group)    214

5.39.2.1   Silver Peak, Kings Mountain and New Johnsonville operations (USA)    215

5.39.3     FMC Corporation    216

5.39.3.1   FMC Lithium    217

5.39.3.2   Other FMC Corporation facilities    218

5.39.4     Western Lithium Corporation    219

5.39.5     Simbol Materials Corp.    222

5.39.6     Albemarle Corporation    223

5.39.7     Toxco Inc.    223

5.39.8     AusAmerican Mining Corp. Ltd.    223

5.39.9     Other USA Companies    224

5.40       Uzbekistan 226

5.41       Zimbabwe 226

5.41.1     Bikita Minerals Ltd    227

5.41.2     Zimbabwe Mining Development Corporation    228

5.41.3     Premier African Minerals    228

5.41.4     Cape Range Ltd.    229

6.         International trade in lithium    230

6.1        Trade in lithium carbonate    230

6.2        Trade in lithium hydroxide and oxides    233

6.3        Trade in lithium chloride    236

6.4        Trade in mineral concentrates    237

6.5        Trade in lithium brines    238

7.         Consumption of lithium    239

7.1        Consumption of lithium by end-use    239

7.2        Consumption of lithium by country/region    243

7.3        Consumption of lithium by product    245

7.4        Outlook for consumption of lithium by end-use    247

7.5        Outlook for lithium consumption by product    251

8.         Use of lithium in rechargeable batteries    253

8.1        Types of rechargeable batteries    253

8.1.1      Lithium-ion batteries    254

8.1.2      Lithium metal polymer batteries    256

8.1.3      Lithium-sulphur batteries    256

8.1.4      Lithium-air batteries    258

8.1.5      NiMH and NiCd batteries    258

8.2        Production of rechargeable batteries    258

8.2.1      Producers of rechargeable lithium batteries    261

8.2.2      Producers of nickel metal hydride batteries    262

8.3        Production of rechargeable lithium battery materials    262

8.3.1      Producers of rechargeable lithium battery materials    264

8.3.1.1    Cathode materials    264

8.3.1.2    Electrolyte salts    267

8.3.1.3    Anode materials    268

8.4        Consumption of rechargeable lithium batteries    268

8.4.1      Computing, communication and consumer (3C) market    269

8.4.2      Power devices and motive power    270

8.4.3      Heavy duty applications    272

8.4.4      Transportation    272

8.5        Consumption of NiMH and NiCd batteries    274

8.6        Consumption of lithium in rechargeable batteries    274

8.7        Outlook for demand for rechargeable batteries    278

8.8        Outlook for consumption of lithium in rechargeable batteries    281

9.         Use of lithium in ceramics    284

9.1        Use of lithium in ceramics    284

9.2        Production and consumption of ceramics    286

9.2.1      Ceramic tiles    287

9.2.1.1    Producers of ceramic tiles    289

9.2.2      Sanitaryware    291

9.2.2.1    Producers of sanitaryware    291

9.2.3      Tableware    293

9.2.3.1    Producers of tableware    294

9.2.4      Cookware and bakeware    295

9.3        Production and consumption of glazes and enamels    295

9.3.1      Producers of glazes and enamels    297

9.4        Outlook for ceramics production and consumption    298

9.5        Consumption of lithium in ceramics    299

9.5.1      Outlook for lithium demand in ceramics    300

10.        Use of lithium in glass-ceramics    302

10.1       Use of lithium in glass-ceramics    302

10.2       Production and consumption of glass-ceramics    304

10.2.1     Producers of glass-ceramics    305

10.3       Consumption of lithium in glass-ceramics    306

11.        Use of lithium in lubricating grease    309

11.1       Types of lubricating grease    309

11.2       Production of grease    311

11.2.1     Producers of lithium grease    314

11.3       Consumption of lithium greases    317

11.4       Consumption of lithium in greases    320

11.4.1     Outlook for demand for lithium in greases    321

12.        Use of lithium in glass    323

12.1       Use of lithium in glass    323

12.2       Production and consumption of glass    325

12.2.1     Container glass    326

12.2.2     Fibreglass    329

12.2.3     Speciality glass    330

12.3       Consumption of lithium in glass    330

12.3.1     Outlook for demand for lithium in glass    331

13.        Use of lithium in metallurgical powders    333

13.1       Continuous casting    333

13.1.1     Producers of continuous casting mould powders    334

13.1.2     Continually cast steel production    334

13.1.3     Consumption of continuous casting mould powders    335

13.1.4     Consumption of lithium in continuous casting mould powders    335

13.2       Traditional metal casting    337

13.3       Outlook for demand for lithium in casting powders    337

14.        Use of lithium in polymers    338

14.1       Types of polymers    338

14.2       Production of polymers    340

14.2.1     Producers of polymers    342

14.3       Consumption of polymers    344

14.4       Consumption of lithium in polymers    348

14.4.1     Outlook for lithium demand in polymers    348

15.        Use of lithium in air treatment    350

15.1       Absorption chillers    350

15.1.1     Production of absorption chillers    351

15.1.2     Producers of adsorption chillers    352

15.1.3     Producers of lithium bromide for absorption chillers    354

15.1.4     Consumption of lithium in absorption chillers    356

15.2       Dehumidification    357

15.2.1     Production of desiccant dehumidification systems    358

15.2.2     Producers of desiccant dehumidification systems    358

15.2.3     Consumption of lithium in desiccant dehumidifiers    359

15.3       Air purification    359

15.5       Outlook for demand for lithium in air treatment    360

16.        Use of lithium in primary batteries    362

16.1       Types of primary batteries    362

16.2       Production of lithium primary batteries    365

16.2.1     Producers of lithium primary batteries    367

16.3       Trade in primary batteries    369

16.4       Production of primary lithium battery materials    370

16.4.1     Producers of lithium primary battery anodes    371

16.5       Consumption of lithium primary batteries    373

16.5.1     Outlook for primary lithium battery consumption    374

16.6       Consumption of lithium in primary batteries    374

16.6.1     Outlook for demand for lithium in primary batteries    377

17.        Use of lithium in aluminium smelting    378

17.1       Process of aluminium smelting    378

17.2       Consumers of lithium in aluminium smelting    380

17.3       Consumption of lithium in aluminium smelting    382

17.3.1     Outlook for lithium demand in aluminium smelting    383

18.        Minor end-uses for lithium    385

18.1       Sanitization    385

18.2       Organic synthesis    386

18.3       Construction    388

18.4       Alkyd resins    388

18.5       Alloys    391

18.5.1     Aluminium-lithium alloy    391

18.5.1.1   Producers of aluminium-lithium alloys    394

18.5.1.2   Applications for aluminium-lithium alloys    395

18.5.1.3   Consumption of lithium in aluminium-lithium alloys    398

18.5.1.4   Outlook for demand for lithium in aluminium-lithium alloys    398

18.5.2     Magnesium-lithium alloy    400

18.6       Electronics    400

18.7       Analytical agents    402

18.8       Dyestuffs    402

18.9       Metallurgy    402

18.10      Photographic industry    402

18.11      Welding fluxes    402

18.12      Electrochromic glass    403

18.13      Pharmaceuticals    403

18.13.1    Producers of lithium-based pharmaceuticals    404

18.13.2    Production and consumption of lithium-based pharmaceuticals    404

18.13.3    Consumption of lithium in pharmaceuticals    405

18.14      Speciality lithium inorganics    405

19.        Prices of lithium    408

19.1       Technical-grade lithium mineral prices    409

19.2       Chemical-grade spodumene prices    412

19.3       Technical-grade lithium carbonate prices    413

19.4       Battery-grade lithium carbonate    415

19.5       Technical-grade lithium hydroxide prices    416

19.6       Battery-grade lithium hydroxide prices    418

19.7       Lithium chloride prices    419

19.8       Lithium metal prices    420

19.9       Outlook for lithium prices    421

19.9.1     Technical-grade lithium carbonate prices    421

19.9.2     Battery-grade lithium carbonate prices    424

19.9.3     Technical-grade lithium mineral prices    425

19.9.4     Chemical-grade spodumene prices    425

19.9.5     Lithium hydroxide prices    426

List of Tables

Page

Table 1: World: Forecast nominal and real prices for technical-grade lithium carbonate, 2012 to 2017     8

Table 2: Properties of lithium    10

Table 3: Significant lithium minerals    11

Table 4: Major lithium bearing smectite group members    12

Table 5: Brine concentrations at selected deposits    13

Table 6: Lithium reserves by country     15

Table 7: Composition of standard lithium concentrates     22

Table 8: Specifications for lithium carbonate produced by SQM and Rockwood Lithium     28

Table 9: Specifications for lithium carbonate produced by other suppliers     28

Table 10: Battery grade lithium hydroxide product specifications of major producers      29

Table 11: Production of lithium by country and company, 2005 to 2012     35

Table 12: Capacity and production of lithium minerals by company, 2011 to 2012     39

Table 13: Capacity and production of lithium compounds from brine-based producers, 2011 to 2012     40

Table 14: Capacity and production of lithium mineral converters, 2011 to 2012     42

Table 15: Production of lithium compounds from minerals, 2005 to 2012     43

Table 16: Planned expansions as reported by existing lithium mineral producers to 2017     46

Table 17: Potential lithium mineral producers to 2017     47

Table 18: Planned expansions by existing lithium brine producers to 2017     49

Table 19: Potential new lithium brine projects to 2017     50

Table 20: Planned expansions to production capacity for existing and potential mineral conversion plants     51

Table 21: Afghanistan: Spodumene bearing pegmatites identified in Nuristan, Badakhshan, Nangarhar, Lagman and Uruzgan provinces    55

Table 22: Argentina: Exports of lithium carbonate, 2004 to 2012     57

Table 23: Argentina: Exports of lithium chloride, 2004 to 2012     58

Table 24:FMC: Brine reserves at the Salar del Hombre Muerto    58

Table 25: FMC: Production and value of lithium carbonate and chloride at the Salta plant, Argentina 2005 to 2012     59

Table 26: ADY Resources: Salar del Rincón reserve estimation, 2007    60

Table 27: Lithium Americas: Lithium and potash resource estimation for the Cauchari-Olaroz property, July 2012 61

Table 28: Lithium Americas: Lithium and potash reserve estimation for the Cauchari-Olaroz property, July 2012 61

Table 29: Lithium Americas: Estimated capital costs for Lithium carbonate production at the Cauchari-Olaroz project, July 2012 63

Table 30: Lithium Americas: Estimated operating costs for Cauchari-Olaroz project, July 2012 65

Table 31: Galaxy Resources: Resource estimation for the Sal de Vida project, January 2012 66

Table 32: Galaxy Resources: Reserve estimate for the Sal de Vida project, April 2013 67

Table 33: Galaxy Resources: Estimated capital costs for Sal de Vida project, October 2011 68

Table 34: Orocobre: Agreements between Borax Argentina and other lithium companies    70

Table 35: Orocobre: Resource estimation for the Salar de Olaroz project, May 2011 71

Table 36: Orocobre: Assay results of first battery grade lithium carbonate product from the Orocobre pilot plant    72

Table 37: Orocobre: Capital costs for 16,400tpy LCE operation at the Salar de Olaroz, May 2011 73

Table 38: Orocobre: Operating costs for battery grade lithium carbonate for the Salar de Olaroz, May 2011 73

Table 39: Orocobre: Resource estimation for the Salinas Grande project, April 2012 74

Table 40: Orocobre: Averaged assay results from pit sampling of brine at the Guayatoyoc project    75

Table 41: Orocobre: Maiden resource estimation for the Salar de Cauchari project, October 2012 75

Table 42: Rodinia Lithium: Salar de Diablillos resource estimation, March 2011 76

Table 43: Rodinia Lithium: Estimated capital costs for the Salar de Diablillos project    77

Table 44: Rodinia Lithium: Estimated operating costs for the Salar de Diablillos project    77

Table 45: Rodinia Lithium: Other Argentine lithium projects    78

Table 46: Australia: Exports of mineral substances NES (excl. natural micaceous iron oxides) 2005 to 2012     81

Table 47: Australia: Unit value of mineral substances NES (excl. natural micaeous iron oxides) 2005 to 2011     81

Table 48: Talison Lithium: Resource estimation for the Greenbushes deposit, December 2012 83

Table 49: Talison Lithium: Lithium mineral reserve estimation for the Greenbushes deposit,  December 2012    83

Table 50: Talison Lithium: Li, K and Na content of brines, Salares 7 project saline lakes 1998, (ppm)    84

Table 51: Talison Lithium: Li, K and Na content of brines, Salares 7 project saline lakes 2009, (ppm)    84

Table 52: Talison Lithium: Production and sales of lithium mineral concentrates and ores, 2005 to 2011     85

Table 53: Talison Lithium: Standard lithium mineral concentrate product specifications    87

Table 54: Galaxy Resources: Mount Cattlin mineral resource estimate, February 2011 89

Table 55: Galaxy Resources: Mount Cattlin mineral reserve estimate, December 2011 89

Table 56: Galaxy Resources: James Bay mineral resource estimate, November 2010 89

Table 57: Galaxy Resources: Mt. Cattlin mine and plant production, Q3 2010 – Q4 2011    90

Table 58: Reed Resources : Mt Marion resource estimation, July 2011 91

Table 59: Altura: Mineral resource estimation for the Pilgangoora lithium project, October 2012 92

Table 60: Belgium: Trade is lithium carbonate, 2005 to 2012     95

Table 61: Belgium: Trade in lithium hydroxide and oxide, 2005 to 2012     96

Table 62: Salars and Lagunas in Bolivia identified by Gerencia Nacional de Recursos Evaporíticos    97

Table 63: Results of sampling campaign by Université de Liegé and Universidad Tecnica de Oruro at the Salar de Coipasa, 2002    99

Table 64: Assay data for brines intercepted during drilling at the Pastos Grandes Salar, August 2011 100

Table 65: Brazil: Lithium resource estimation by mineral type, 2009    101

Table 66: Brazil: Trade in lithium chemicals and concentrates, 2004 to 2011     102

Table 67: CBL: Production of lithium concentrates and lithium salts, 2005 to 2011    102

Table 68: Arqueana: Production of lithium concentrates, 2008 to 2011    103

Table 69: Canada: Resources estimations for Canadian lithium projects    106

Table 70: Canada: Imports and exports of lithium compounds 2005 to 2012     108

Table 71: TANCO: Spodumene concentrate production 2005 to 2011     109

Table 72: Canada Lithium: Resource estimation for the Quebec Lithium project, December 2011 109

Table 73: Canada Lithium: Reserve estimation for the Quebec Lithium project, December 2011 110

Table 74: Canada Lithium: Estimated capital expenditure for Quebec Lithium project (inc.LiOH and Na2SO4 plant costs), October 2012 111

Table 75 :Canada Lithium: Estimated operating expenditure for Quebec Lithium project, October 2012 111

Table 76: Nemaska Lithium: Resource estimation for the Whabouchi project, June 2011 113

Table 77: Nemaska Lithium: Reserve estimation for the Whabouchi project, October 2012 113

Table 78: Avalon Rare Metals: Separation Rapids NI 43-101 resource and reserve estimation, 1999    116

Table 79: Perilya Ltd: Mineral resource estimation for Moblan deposit, May 2011 117

Table 80: Rock Tech Lithium: Structure of the Georgia Lake project, November 2011 118

Table 81: Rock Tech Lithium: Updated mineral resource estimation for Georgia Lake project, July 2012 119

Table 82: Glen Eagle: Resource estimation for Authier lithium property, January 2012 121

Table 83: Canada: Lithium exploration projects in Canada with uncompleted scoping studies or PFS in October 2012 122

Table 84: Chile: Lithium carbonate, chloride and hydroxide production, 2004 to 2011     128

Table 85: Chile: Special operating licence bidders for the September 2012 auction    129

Table 86: SQM: Majority shareholders of SQM as of December 31st 2011    130

Table 87: SQM: Reserves within brines at the Salar de Atacama project    131

Table 88: SQM: Production, revenue and value per tonne of lithium compounds, 2003 to 2012    132

Table 89: SQM: Specifications for lithium carbonate     133

Table 90: SQM: Specifications for lithium hydroxide     134

Table 91: RWL: Gross tonnage, value and unit value of lithium carbonate exports, 2006 to 2012    137

Table 92: RWL: Gross tonnage, value and unit value of lithium chloride exports, 2006 to 2012    138

Table 93: Li3 Energy: Resource estimation for the Maricunga property, April 2012 140

Table 94: Chile: Exports of lithium carbonate by destination, 2004 to 2011    144

Table 95: Chile: Lithium carbonate export volume, value and unit price by company, 2005 to 2011    144

Table 96: Chile: Lithium chloride exports by destination, 2004 to 2012    145

Table 97: Chile: Lithium hydroxide exports by destination, 2004 to 2012    146

Table 98: China : Estimated resources and reserves of both lithium mineral and brine operations and projects    148

Table 99: China: Production of lithium, 2003 to 2012    149

Table 100: China: Producers of lithium minerals, 2011 to 2012    151

Table 101: China: Production and capacity of Chinese lithium brine operations, 2011    152

Table 102: China: Mineral conversion plant production and production capacity, 2012    154

Table 103: China: Producers of battery grade lithium metal, 2012    154

Table 104: China: Imports and exports of lithium carbonate, 2005 to 2012     155

Table 105: China: Imports and exports of lithium chloride, 2005 to 2012     156

Table 106: China: Imports and exports of lithium hydroxide, 2005 to 2012     157

Table 107: China: Imports and exports of lithium oxide, 2005 to 2012     157

Table 108: Tibet Lithium New Technology Development: Lithium production, 2010 to 2012    158

Table 109: Qinghai CITIC: Lithium carbonate production, 2008 to 2012     160

Table 110:  Dangxiongcuo reserve estimation from 2006 qualifying report    163

Table 111: Jiangxi Western Resources: Lithium Production, 2010    167

Table 112: Sichuan Tianqi: Production and sales of lithium products, 2010 to 2011     169

Table 113: Galaxy Resources: Battery grade lithium carbonate chemical specifications    172

Table 114: KeliberOy: Claims, reservation and mining concessions for lithium projects held by Keliber in Finland, 2012    181

Table 115: France: Imports and exports of lithium carbonate, 2005 to 2012     183

Table 116: France: Imports and exports of lithium hydroxide and oxide, 2005 to 2012     184

Table 117: Germany: Imports and exports of lithium carbonate, 2005 to 2012     184

Table 118: India: Trade in lithium hydroxide and oxides, 2005 to 2012     187

Table 119: India: Trade in lithium carbonate, 2005 to 2012     187

Table 120: India: Producers of lithium chemicals    188

Table 121: Japan: Trade in lithium carbonate, 2005 to 2012     190

Table 122: Japan: Trade in lithium hydroxide and oxide, 2005 to 2012     191

Table 123: Mexico: LitioMex S.A. concessions and resource estimations    194

Table 124: Namibia: Production of lithium minerals, 1990 to 1998     197

Table 125: Netherlands: Trade in lithium carbonate, 2005 to 2012     198

Table 126: Netherlands: Trade in lithium hydroxide and oxide, 2005 to 2012     199

Table 127: SociedadMineira de Pegmatites: Production of Lithium, 2004 to 2012     200

Table 128: Russia: Deposits of lithium    201

Table 129: Russia: Imports of lithium carbonate, 2002 to 2012     204

Table 130: Russia: Exports of lithium hydroxide, 2002 to 2012     204

Table 131: Russia: Imports of lithium hydroxide, 2002 to 2012     205

Table 132: South Korea: Trade in lithium carbonate, 2005 to 2012     207

Table 133: South Korea: Trade in lithium hydroxide, 2005 to 2012     207

Table 134: Spain: Imports of lithium compounds, 2005 to 2012     208

Table 135: Minera Del Duero: Production of lepidolite in Spain, 2003 to 2011     208

Table 136: Inferred mineral resource estimation for the Doade-Presquerias project, October 2011 209

Table 137: Taiwan: Imports of lithium carbonate, 2005 to 2012     210

Table 138: UK: Imports of lithium carbonate and lithium hydroxides and oxides 2005 to 2012     211

Table 139: USA: Imports and exports of lithium carbonate 2005 to 2012     213

Table 140: USA: Imports and exports of lithium oxide and hydroxide 2005 to 2012     214

Table 141: FMC: Product range    218

Table 142: WLC: Resource estimation for the Kings Valley project, January 2012 219

Table 143: WLC: Reserve estimation for the Kings Valley project, December 2011 220

Table 144: WLC: Estimated operating and capital costs for ‘Case 1′ and ‘Case 2′ scenarios at the Kings Valley project.    221

Table 145: USA: Lithium exploration projects yet to reach scoping study or PFS stage in development    224

Table 146: Zimbabwe: South African imports of mineral substances from Zimbabwe, 2005 to 2012     227

Table 147: Bikita Minerals: Mine production and lithium content 2003 to 2011    228

Table 148: World: Total exports of lithium carbonate, 2005 to 2012     230

Table 149: World: Total imports of lithium carbonate, 2005 to 2012     232

Table 150: World: Total exports of lithium hydroxide and oxide, 2005 to 2012     234

Table 151: World: Total imports of lithium hydroxide and oxide, 2005 to 2012     236

Table 152: World: Major importers and exporters of lithium chloride, 2005 to 2012     237

Table 153: World: Exports of lithium minerals by major lithium mineral producing nations (excl. China), 2005 to 2012     238

Table 154: Chile: Exports of lithium chloride brine1 by SQM to China, 2005 to 2012     238

Table 155: World: Consumption of lithium by end-use, 2002, 2007 and 2012    240

Table 156: World: Estimated consumption of lithium by country/region, 2002, 2007 and 2012     244

Table 157: World: Consumption of lithium by end-use, by product, 2012    246

Table 158: World: Forecast consumption of lithium by end-use, 2012 to 2017     248

Table 159: Japan: Producers of lithium-ion battery cathode materials, 2012    265

Table 160: South Korea: Producers of lithium-ion battery cathode materials, 2012    265

Table 161: China: Producers of lithium-ion battery cathode materials, 2012    266

Table 162: World: Producers of lithium salts for electrolytes, 2012    267

Table 163: World: Lithium battery consumption in 3C products, 2012    269

Table 164: World: Lithium battery consumption in power devices and motive power, 2012    271

Table 165: World: Lithium battery consumption in heavy duty applications, 2012    272

Table 166: World: Lithium battery consumption in transport applications, 2012    274

Table 167: World: Lithium consumption in rechargeable lithium batteries end-use, 2012    275

Table 168: World: Lithium consumption in NiMH and NiCd batteries, 2012    275

Table 169: World: Consumption of lithium in rechargeable batteries by type, 2007 to 2012     277

Table 170: Japan: Consumption of lithium in rechargeable batteries, 2007 to 2012     277

Table 171: World: Consumption of lithium in rechargeable batteries by country, 2007 to 2012     278

Table 172: World: Rechargeable lithium battery demand by market, 2012 and 2017    278

Table 173: World: Comparison of EV production estimates in 2017 by industry consultant    280

Table 174: World: Forecast rechargeable battery consumption in EVs, 2017    281

Table 175: World: Lithium consumption in rechargeable lithium batteries by end-use, 2017    281

Table 176: World: Forecast demand for lithium in rechargeable lithium batteries, 2012 to 2017     282

Table 177: World: Forecast demand for lithium in rechargeable batteries by battery type, 2012 to 2017     282

Table 178: World: Forecast demand for lithium in rechargeable batteries by product type, 2007 to 2012     283

Table 179: Typical whiteware body compositions     285

Table 180: World: Production of ceramic tiles by leading country, 2007 to 2012     287

Table 181: World: Consumption of ceramic tiles by leading countries, 2007 to 2011     289

Table 182: World: Leading ceramic tile manufacturing companies, 2010    290

Table 183: World: Leading sanitaryware manufacturing companies, 2010    292

Table 184: World: Consumption of lithium in ceramics, 2012    300

Table 185: World: Consumption of lithium in ceramics, 2007 to 2012     300

Table 186: World: Forecast demand for lithium in ceramics, 2012 to 2017     301

Table 187: Glass-ceramic matrices    302

Table 188: Compositions of commercial glass-ceramics    303

Table 189: Japan: Consumption of lithium carbonate in glass-ceramics, 2007 to 2012     306

Table 190: World: Consumption of lithium in glass-ceramics by end-use and product type, 2012     307

Table 191: World: Consumption of lithium in glass-ceramics, 2007 to 2012     307

Table 192: World: Forecast demand for lithium in glass-ceramics, 2012 to 2017     308

Table 193: Properties of commercial greases    311

Table 194: World: Producers of lubricating grease    315

Table 195: World: Forecast demand for lithium in greases, 2012 to 2017    322

Table 196: Typical batch compositions for glass by type     323

Table 197: Main sources of lithium used in glass    324

Table 198: EU: Production of glass by type, 1998 to 2012     328

Table 199: USA: Production of container glass, 1999 to 2008    328

Table 200: Typical chemical composition of types of textile-grade fibreglass     329

Table 201: World: Estimated consumption of lithium in glass, 2012     331

Table 202: World: Consumption of lithium in glass, 2007 to 2012     331

Table 203: World: Forecast demand for lithium in glass, 2012 to 2017     332

Table 204: World: Consumption of lithium in continuous casting mould powders, 2007 to 2012     336

Table 205: Japan: Consumption of lithium in fluxes, 2007 to 2012     336

Table 206: World: Forecast demand for lithium in casting powders, 2012 to 2017     337

Table 207: Microstructure of different types of polybutadienes    339

Table 208: World: Producers of SSBR, BR and SBC, 2012    343

Table 209: World: Planned new/expanded SBR, BR and SBC plants    344

Table 210: World: Forecast demand for lithium in synthetic rubber and thermoplastics, 2011 to 2017    349

Table 211: World: Capacity for lithium bromide production, end-2012     355

Table 212: Japan: Consumption of lithium bromide, 2007 to 2012    356

Table 213: World: Forecast demand for lithium in air treatment, 2012 to 2017    361

Table 214: Characteristics of primary lithium batteries    363

Table 215: Japan: Production of primary batteries by type, 1998 to 2012     367

Table 216: World: Trade in lithium primary batteries, 2007 to 2011     369

Table 217: Primary lithium batteries and their material compositions    371

Table 218: Specifications for battery-grade lithium metal     371

Table 219: World: Producers of battery-grade lithium metal, end-2012    372

Table 220: Japan: Consumption of lithium in primary lithium batteries, 2007 to 2012    375

Table 221: Japan: Unit consumption of lithium in primary batteries, 2007 to 2012    375

Table 222: World: Imports of battery-grade lithium metal, 2007 to 2012    376

Table 223: World: Forecast demand for lithium in primary batteries, 2012 to 2017    377

Table 224: Effects of additives and temperatures on properties of molten cryolite    379

Table 225: World: Aluminium smelters using Söderberg technology, end-2012    381

Table 226: World: Forecast demand for lithium in aluminium smelting, 2012 to 2017     384

Table 227: World: Consumption of lithium in other end-uses, 2007, 2012 and 2017     385

Table 228: Examples of uses for lithium in organic synthesis    387

Table 229: Physical properties of Al-Li alloys    392

Table 230: Chemical composition of Al-Li alloys     393

Table 231: Use of Al-Li alloys in selected aircraft    397

Table 232: World: Forecast demand for lithium in aluminium-lithium alloys, 2012 to 2017    399

Table 233: Properties of lithium niobate and lithium tantalite    401

Table 234: Applications for SAW components    401

Table 235: Applications for speciality inorganic lithium compounds    406

Table 236: Prices of lithium minerals, 2000-2013     410

Table 237: Comparison of prices for lithium minerals and carbonate, 2004 to 2012    411

Table 238: Comparison of prices for chemical-grade spodumene concentrate and lithium carbonate, 2004 to 2012    412

Table 239: Comparison of technical- and battery- grade lithium carbonate prices, 2004 to 2012     416

Table 240: Average values of exports/imports of lithium oxides and hydroxides by leading exporting/importing country, 2004 to 2012     417

Table 241: Average values of exports of lithium chloride by leading producing country, 2004 to 2012    420

Table 242: Average values of exports of lithium metal by leading producing country, 2004 to 2012    421

Table 243: World: Forecast nominal and real prices for technical-grade lithium carbonate, 2012 to 2017     423

Table 244: World: Forecast nominal prices for technical-grade lithium carbonate and chemical-grade lithium minerals, 2012 to 2017     425

Table 245: World: Forecast nominal prices for technical-grade lithium carbonate and technical-grade lithium hydroxide, 2012 to 2017     426

List of Figures

Figure 1: Lithium product flow chart and main end-uses, 2012     1

Figure 2: Consumption of lithium by end-use, 2000 to 2012     2

Figure 3: Production of lithium by country, 2000 to 2012     4

Figure 4: Price history of lithium carbonate, 1990 to 2012    6

Figure 5: World: Forecast real prices for technical-grade lithium carbonate, 2012 to 2017     9

Figure 6: Overview of lithium production    16

Figure 7: Extraction and processing of brines from the Salar de Atacama, Chile and Silver Peak, Nevada by Rockwood Lithium    18

Figure 8: Flow sheet showing the processing of brines at Salar de Carmen by SQM    19

Figure 9: Simplified flow sheet of the Li SX™ method patented by Bateman Lithium Projects    21

Figure 10: Simplified mineral concentrate production flow sheet for a typical hard rock lithium operation    22

Figure 11: Simplified flow sheet for lithium carbonate production from spodumene mineral concentrate using the acid-roast method    24

Figure 12: Simplified flow sheet for lithium hydroxide and lithium hydroxide monohydrate production from spodumene mineral concentrate using the lime-roast method    25

Figure 13: Simplified flow sheet for lithium carbonate production from hectorite clay developed by Western Lithium    27

Figure 14: Mining and milling costs for hard rock lithium mineral operations/projects    31

Figure 15: Lithium carbonate cash operating costs, 2012    32

Figure 16:  Potential new producers production costs    33

Figure 17: World: Production of lithium by country, 2000 to 2012     34

Figure 18: Production of lithium from mineral and brine sources, 2005 to 2012     37

Figure 19: Production of lithium minerals by company, 2012     38

Figure 20: Production of lithium from brines by country, 2005 to 2012     40

Figure 21: Planned production capacity and consumption for lithium, 2012 to 2017     45

Figure 22: Forecast production and consumption of lithium, 2012 to 2017     54

Figure 23: Pilot plant flow sheet developed for Lithium Americas at SGS Mineral Services    62

Figure 24: Brazil: Production of Lithium products 2005 to 2010     101

Figure 25: SQM: Lithium sales by destination 2011, 2009, 2007 and 2005     135

Figure 26: SQM: Destination of lithium carbonate exports, 2006 to 2011     136

Figure 27: China: Location of mineral conversion and lithium chemical/metal plants in China, 2012    153

Figure 28: Japan: Imports of lithium carbonate, hydroxide & oxide and combined LCE, 2005 to 2012     191

Figure 29: World: Leading exporters of lithium carbonate, 2006, 2008, 2010 and 2012    231

Figure 30: World: Leading importers of lithium carbonate, 2006, 2008, 2010 and 2012    233

Figure 31: World: Leading exporters of lithium hydroxide and oxides, 2006, 2008, 2010 and 2012    235

Figure 32: World: Growth in consumption of lithium, 2000 to 2012    239

Figure 33: World: Consumption of lithium by end-use, 2012    240

Figure 34: World: Consumption of lithium by end-use, 2000 to 2012     241

Figure 35: World: Consumption of lithium by end-use, 2000 to 2012     241

Figure 36: World: Estimated consumption of lithium by country/region, 2002, 2007 and 2012     244

Figure 37: World: Consumption of lithium by product, 2012     245

Figure 38: World: Consumption of lithium by type, 2000 to 2012     247

Figure 39: World: Historical and forecast consumption of lithium by end-use, 2007 to 2017     248

Figure 40: World: Forecast consumption of lithium by form, 2007, 2012 and 2017     252

Figure 41: Specific energy and energy density of rechargeable batteries    253

Figure 42: Lithium-ion battery schematic    254

Figure 43: Lithium metal polymer battery schematic    256

Figure 44: Lithium-sulphur cell schematic    257

Figure 45: Lithium-air cell schematic    258

Figure 46: World: Production of rechargeable batteries1, 1995 to 2012     259

Figure 47: World: Production of rechargeable batteries1, 1995 to 2012     260

Figure 48: World: Rechargeable lithium battery production by country, 2000 to 2012     260

Figure 49: Lithium-ion battery materials value chain    263

Figure 50: World: Production of lithium cathode materials by type, 2000 to 2012    264

Figure 51: World: Market for rechargeable lithium batteries by end-use, 2002, 2007 and 2012     268

Figure 52: World: Market for rechargeable lithium batteries by end-use, 2012     269

Figure 53: World: Production of rechargeable batteries and consumption of lithium, 2000 to 2012    276

Figure 54: World: Market for rechargeable lithium batteries by end-use, 2002 to 2017     279

Figure 55: World: Ceramic tile production by region, 2007 and 2012     288

Figure 56: World: Sanitaryware production by region/country, 2010    291

Figure 57: World: Production of tableware by country/region, 2008    293

Figure 58: USA: Shipments of cookware, bakeware and kitchenware, 2001 to 2010    295

Figure 59: World: Shipments of white goods by region, 2000 to 2020    296

Figure 60: World: Year-on-year growth in construction spending and GDP, 2000 to 2017    298

Figure 61: World: Production of lubricating grease by additive type, 2011     312

Figure 62: World: Production of lubricating grease by type, 2000 to 2012    313

Figure 63: World: Production of lithium grease by region/country and by type,  2000 and 2011     314

Figure 64: World: Output of automobiles by region, 2000 to 2012    318

Figure 65: World: Deliveries of commercial aircraft, 2000 to 2012    318

Figure 66: World: Shipbuilding deliveries, 2000 to 2012    319

Figure 67: World: Relative industrial and transport output and lithium grease production, 2002 to 2011    320

Figure 68: World: Production of grease and consumption of lithium, 2000 to 2012    321

Figure 69: World: Estimated production of glass by type, 2012    326

Figure 70: World: Production of container glass by region/country, 2012    326

Figure 71: World: Consumption of glass packaging by region, 2011    327

Figure 72: World: Production of continuously cast steel by region, 1998 to 2012     335

Figure 73: World: Capacity for synthetic rubber production by country/region, 2012    340

Figure 74: World: Capacity for BR, ESBR and SSBR rubber by country/region, end-2011    341

Figure 75: World: SBC capacity by region/country, end-2010    341

Figure 76: World: Production of synthetic rubber by region, 1996 to 2011     342

Figure 77: World: Consumption of synthetic rubber by type, 2012    345

Figure 78: World: consumption of BR by end-use, 2010    346

Figure 79: World: Consumption of SBC by region/country, 2010    347

Figure 80: Consumption of SBC by end-use, 2007    347

Figure 81: World: Production of absorption chillers, 2003 to 2012    352

Figure 82: World: Consumption of lithium bromide in air treatment, 2001 to 2012    356

Figure 83: Specific energy and energy density of primary batteries    362

Figure 84: Primary and secondary battery gravimetric energy density    365

Figure 85: World: Production of primary lithium batteries by country, 1998 to 2012     366

Figure 86: Primary lithium battery schematics    370

Figure 87: World: Demand for lithium metal in primary batteries, 2000 to 2012    376

Figure 88: World: Aluminium output by type and lithium consumption, 2000 to 2012    383

Figure 89: World: Consumption of alkyd-based paints and coatings, 2010    390

Figure 90: Development of Al-Li alloys    392

Figure 91: World: Deliveries of commercial aircraft and lithium consumption, 2007 to 2019    399

Figure 92: Price history of lithium carbonate, 1990 to 2012    408

Figure 93: Compound annual prices of lithium minerals, 2000 to 2013     411

Figure 94: Prices for technical-grade lithium carbonate, 1999 to 2012     414

Figure 95: Prices for battery-grade lithium carbonate, 1999 to 2012     415

Figure 96: Comparison of lithium hydroxide and lithium carbonate prices, 2000 to 2012     418

Figure 97: Japan: Quarterly average import value of lithium hydroxide from the USA, 2008 to 2012     419

Figure 98: World: Forecast nominal prices for technical-grade lithium carbonate, 2012 to 2017     423

Figure 99: World: Forecast real prices for technical-grade lithium carbonate, 2012 to 2017     424

For further information on this report, please contact Robert Baylis (rbaylis@roskill.co.uk).

SOURCE Roskill Information Services

 

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Twelve African Energy, Mining and Industry Ministers confirm attendance at the Africa Energy Forum 2013 in Barcelona

Posted on 16 May 2013 by Africa Business

A recent report from the World Bank indicated that the GDP of a third of African countries grew by at least 6% last year, despite the estimate that power outages cost African economies on average around 2% pa of their GDP.

African Ministers, heads of utilities, regulators and international energy companies will address this and other pressing issues concerning Africa’s power sector at the Africa Energy Forum in Barcelona, 18-20 June. Over 800 delegates are expected to attend this international investment Forum for Africa’s power industry to compete for partnerships and deals.

Bruno Cockburn, AEF’s Programme Development Director, commented; “We are delighted the forum remains an important investment tool for proactive African stakeholders looking to address the power and infrastructure investment gap head on. The international community’s response has been extraordinary this year already.”

The latest government official to confirm his attendance at EnergyNet’s Africa Energy Forum 2013 is Hon. Salvador Namburete, Minister of Energy in Mozambique.

He will join Ministers from Botswana, Burkina Faso, Democratic Republic of Congo, Egypt, Ethiopia, Ghana, Libya, Mauritania, Namibia, Rwanda, South Africa, Sierra Leone and Tunisia in Barcelona.

To view the full list of speakers please visit

http://africa-energy-forum.com/#tab-countryParticipants

Event dates:

Pre-conference workshops: 18th June 2013

Conference & Exhibition: 18-20th June 2013

Website: www.africa-energy-forum.com

For more information:

Marketing Director: Liz Owens

Tel: +44 (0)20 7384 7807

Email: liz.owens@energynet.co.uk

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Oando Energy Resources Announces Additional 2,500 bopd Production Capacity From Ebendo Field

Posted on 16 May 2013 by Africa Business

About Oando Energy Resources Inc. (OER)

OER currently has a broad suite of producing, development and exploration properties in the Gulf of Guinea (predominantly in Nigeria) with current production of approximately 5,205 bopd from the Abo Field in OML 125 and the Ebendo Field. OER has been specifically structured to take advantage of current opportunities for indigenous companies in Nigeria, which currently has the largest population in Africa, and one of the largest oil and gas resources in Africa.

 

Oando Energy Resources Inc. (“OER” or the “Company“) (TSX: OER), a company focused on oil exploration and production in Nigeria, today announced results from the successful completion and testing of the Ebendo 5 well. The completion and testing of the Ebendo 5 well, which is expected to contribute an additional 2,500 barrels of oil per day (“bopd”) gross (1,069 bopd net to OER), follows the successful resumption of 3,200 bopd gross (1,368 bopd net to OER) production on the Ebendo field, as was announced on April 24, 2013.

“We’re extremely pleased to announce the successful completion of the Ebendo 5 well drilling programme, increasing our net capacity by 1,069 bopd,” said Pade Durotoye , CEO of OER. “Ebendo currently has a total production capacity of up to 7,000 bopd, but is currently subject to takeaway capacity restrictions as a result of the Kwale-Akri pipeline. In light of this, we are increasing our efforts to establish our alternative evacuation pipeline, the 53 Kilometer, 45kboepd Umugini pipeline, that will further support the development of this field and reduce our dependence on one evacuation pipeline.”

The Ebendo 5 well was spudded as a deviated appraisal/development well on October 12, 2012, mainly to appraise the intermediate reservoirs encountered by the earlier Ebendo 4 well. The Ebendo 5 well was drilled to a total vertical depth (TVD) of 11,513ft and encountered eight hydrocarbon bearing sands. A drill stem test was successfully completed on two of these sands (XVIIIc and XVIIId). Sand XVIIId flowed for 18 hours and 30 minutes during the final flow test on four choke sizes. On average, it flowed on choke 28/64″ for 3 hours and 30 minutes, with an average oil and gas rate of 1,592 bopd and 2.45 mmscf/day, respectively. Sand XVIIIc flowed for 15 hours and 50 minutes during the final flow test on three choke sizes. On average, it flowed on choke 24/64″ for 8 hours and 23 minutes, with an average oil and gas rate of 840 bopd and 4.62 mmscf/day, respectively. Oil with API gravities of 47.2 degrees and 46.4 degrees were recovered from levels XVIIIc and XVIIId, respectively. Testing of sand XV is planned to occur during production, as there was a mechanical failure during testing of this sand after the completion of the well. However, from Modular Formation Dynamic Testing (MDT) pressure sampling, the fluid gradient in level XV was 0.272 pressure per foot (psi/ft), which is indicative of oil, there was no appreciable steady decline in the pressures during the Test.

The Ebendo 5 well was dually completed and sand XV will be produced through the short string while sands XVIIIc and XVIIId will be produced through the long string via a sliding sleeve. The Acme Rig-5 was released on April 17, 2013 from the Ebendo 5 well site.

The Company further announced that a new rig, the Deutag T-26, has been mobilised and a sixth well (the Ebendo 6 well) was spudded on April 18, 2013. TVD for the Ebendo 6 well is planned to be at 10,680 ft. To date, the Ebendo 6 well has been drilled to a total vertical depth of 6,231 ft. The results from this drilling programme will enable further appraisal of the shallow reservoirs encountered in the last two wells.

As pressure transient analysis or well-test interpretation has not been carried out, all results disclosed in this press release should be regarded as preliminary and are not necessarily indicative of long-term performance or ultimate recovery. The results will be updated when additional data becomes available.

 

SOURCE Oando Energy Resources Inc.

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Abengoa to develop 132 kilometer transmission line project in Kenya

Posted on 15 May 2013 by Africa Business

– The project, financed by the African Development Bank, is worth approximately €32 million.

About Abengoa

Abengoa (MCE: ABG.B) is a company that applies innovative technology solutions for sustainability in the energy and environment sectors, generating electricity from the sun, producing biofuels, desalinating sea water and recycling industrial waste. (www.abengoa.com)

SEVILLE, Spain /PRNewswire/ – Abengoa (MCE: ABG.B), the international company that applies innovative technology solutions for sustainability in the energy and environment sectors, has been chosen by the Kenya Electricity Transmission Company (Ketraco) of the Kenyan Ministry of Energy for an electricity transmission project that includes construction of a 132 kilometer line and extension of an existing substation in Kenya, in a contract worth approximately €32 million.

The project, which is being financed by the African Development Bank, is part of the plan called “Interconnection of Electric Grids of Nile Equatorial Lakes Countries,” which is being developed in Africa and involves the construction of approximately 769 kilometers of transmission lines in Kenya, Uganda, Rwanda, the Democratic Republic of the Congo (DRC) and Burundi. Abengoa will not retain any interest in the constructed assets.

Abengoa will be responsible for the engineering, construction and commissioning, ensuring the highest levels of quality at every stage of the process. The 132 kilometer line will run from the substation in Lessos, Kenya, to the border with Uganda to connect with the Tororo, Uganda, substation. Abengoa will also extend the Lessos substation and be responsible for its design, construction and commissioning.

The project is scheduled to be completed within 18 months and handed over to Ketraco in November 2014.

This contract, together with projects previously carried out in Tanzania and Kenya, will strengthen Abengoa’s presence in the African market, reinforcing its position as a leading transmission and distribution contractor.

SOURCE Abengoa

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Canadian Solar’s Partner Romano Wins Eskom Rooftop Project in Johannesburg

Posted on 15 May 2013 by Africa Business

About Eskom

Eskom generates approximately 95% of the electricity used in South Africa and approximately 45% of the electricity used in Africa. Eskom generates, transmits and distributes electricity to industrial, mining, commercial, agricultural and residential customers and redistributors. Additional power stations and major power lines are being built to meet rising electricity demand in South Africa. Eskom will continue to focus on improving and strengthening its core business of electricity generation, transmission, trading and distribution.  For more information, please visit www.eskom.co.za.

About Romano Group

The Romano Group is a multi-skilled provider of a broad range of sustainable solutions, to clients who are typically large commercial, industrial or retail property owners and tenants spread throughout Africa. Romano’s value-added offer includes the design, manufacture and installation of high-quality Solar PV, ECO-Lighting, Modular Construction and Signage & Print solutions, all of which are delivered on-time at a competitive price. The company celebrated its 60th birthday in 2012 and employs 150 people. For more information, please visit www.romano.co.za.

About Canadian Solar Inc.

Founded in 2001 in Canada, Canadian Solar Inc. (NASDAQ: CSIQ) is one of the world’s largest and foremost solar power companies. As a leading vertically integrated provider of solar modules, specialized solar products and solar power plants with operations in North America, South America, Europe, Africa, the Middle East, Australia and Asia, Canadian Solar has delivered more than 4GW of premium quality solar modules to customers in over 50 countries. Canadian Solar is committed to improve the environment and dedicated to provide advanced solar energy products, solutions and services to enable sustainable development around the world. For more information, please visit www.canadiansolar.com

 

JOHANNESBURG, May 15, 2013 /PRNewswire-FirstCall/ — Canadian Solar Inc. (NASDAQ: CSIQ) (the “Company” or “Canadian Solar”), one of the world’s largest solar companies, today announced the successful expansion of its partner Romano Sustainable Solutions in Africa. Romano, a pioneer company in the South African photovoltaic (PV) industry, was recently awarded the engineering, procurement and construction (EPC) contract for a 360 kW PV solar system installation. The roof top installation will be on the Johannesburg headquarters of Eskom, the largest producer of electricity in Africa.

As one of the most experienced solar PV systems integrators in Africa, Romano designs, manufactures and installs solar PV systems to commercial clients spread throughout Africa. Most of Romano’s solar PV systems are grid-tied systems. When connected to the client side of the on-site electrical sub-station, the electricity generated is used on the site by the client. When connected to the utility side the electricity generated is exported to the national or municipal electricity grid.

“We are very proud to be involved with this prestigious project for Eskom, which we understand was awarded on the basis of our technical capability and track record, as well as the cost effectiveness of our offer,” said Alexi Romano , CEO of Romano.

“The solar energy market in Africa continues to develop and has considerable potential for growth. We are positioned to benefit through our relationships with experienced partners like Romano. We look forward to supporting their growth in this important market, including the high profile Eskom project,” said Dr. Shawn Qu , Chairman and CEO of Canadian Solar.”

 

SOURCE Canadian Solar

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Global Trade Partners in the 21st Century

Posted on 15 May 2013 by Africa Business

WASHINGTON, May 15, 2013/African Press Organization (APO)/ — Remarks

Robert D. Hormats

Under Secretary for Economic Growth, Energy, and the Environment

World Economic Forum

Pretoria, South Africa

May 14, 2013

 

 

As Prepared

 

Thank you Lyal for the kind introduction.

I am delighted to be in South Africa again. I visited last fall with Secretary of State Hillary Clinton.

What was most striking then, and continues to be the case today, is the extent to which the image of Africa has changed. According to the IMF, growth in sub-Saharan Africa will surge to 6.1% next year, well ahead of the global average of 4%.

Africa is booming in nearly every sector, ranging from massive energy developments in Mozambique, Tanzania, Ghana, and other countries; to the growth of Rwanda and Kenya’s information and communications technology sectors; to South Africa’s thriving auto industry. And, though far from declaring victory, Africa is reaching a turning point in its hard-fought battles against poverty and corruption.

Today’s Africa looks nothing like what, in 2000, The Economist referred to as the “Hopeless Continent.” It is critical that we concentrate the world’s eyes on the new image of Africa, that of progress and promise. Perspectives are evolving—in 2011, The Economist referred to Africa as the “Rising Continent” and, last March, as the “Hopeful Continent.”

Trade is at the heart of Africa’s economic resurgence. So, in this context, I will speak first about America’s vision for global trade in the 21st century and then, focus on implications and, indeed, opportunities for Africa. America’s global trade agenda in the 21st century is shaped by a foundation laid, in large part, in the mid-20th century. After World War II, American and European policymakers worked together to build a set of international institutions that embodied democratic and free market principles.

The GATT—which led to the WTO—World Bank, IMF, and the OECD were designed to foster international economic cooperation. These institutions were vital to the economic prosperity of the United States, and to the success of America’s foreign policy and national security for the next three generations.

As we move into the 21st century, a new multi-polar global economy has surfaced. The emergence of a new group of economic powerhouses—Brazil, Russia, India, and China, of course, but also countries in Africa—has created momentum (if not necessity) for greater inclusiveness in the global trading system.

At the same time, these new players must assume responsibilities for the international economic system commensurate with the increasing benefits they derive from the global economy. In addition to the geography of international trade, the nature of trade and investment has evolved to include previously unimaginable issues such as e-commerce and sustainability.

So, part of our vision for trade in the 21st century is to build a system that is more inclusive, recognizes the new realities of economic interdependence, and matches increased participation in the global trading system with increased responsibility for the global trading system.

We are making progress with bringing new players into the global trading system as equal partners. Free Trade Agreements with Korea, Colombia, and Panama entered into force last year.

And, we are continuing negotiations on the Trans-Pacific Partnership—or TPP as it is more widely known. With Japan’s anticipated entry into the negotiations, TPP will grow to include 12 countries of different size, background, and levels of development. The agreement, when finalized, will encompass nearly 40% of global GDP and one-third of global trade.

In addition to TPP, we are embarking on a Transatlantic Trade and Investment Partnership with the European Union. TTIP—as it is being called—will strengthen economic ties between the United States and Europe, and enhance our ability to build stronger relationships with emerging economies in Asia, Africa, and other parts of the world.

TPP and TTIP are truly historic undertakings. Our objective is not only to strengthen economic ties with the Asia-Pacific and Europe, but also to pioneer approaches to trade and investment issues that have grown in importance in recent years.

These agreements will seek to break new ground by addressing a multitude of heretofore unaddressed non-tariff barriers, setting the stage for convergence on key standards and regulations, and establishing high quality norms and practices that can spread to other markets. TPP, for example, will raise standards on investment and electronic commerce, and afford protections for labor and the environment.

Our agenda also includes strengthening the multilateral trading system through the World Trade Organization. For example, the United States would like to see a multilateral Trade Facilitation Agreement, which would commit WTO Members to expedite the movement, release, and clearance of goods, and improve cooperation on customs matters. A Trade Facilitation Agreement would be a win-win for all parties—Africa especially.

Cross-border trade in Africa is hindered by what the World Bank calls “Thick Borders.” According to the latest Doing Business Report, it takes up to 35 days to clear exports and 44 days to clear imports in Africa. Clearing goods in OECD countries, in contrast, takes only 10 days on average and costs nearly half as much. Countries like Ghana and Rwanda have benefited tremendously from the introduction of trade facilitation tools and policies.

Ghana, for instance, introduced reforms in 2003 that decreased the cost and time of trading across borders by 60%, and increased customs revenue by 50%. A multilateral Trade Facilitation Agreement will create a glide path for increased trade with and within Africa.

Our views for 21st century global trade partnerships go beyond Europe and the Asia-Pacific, and efforts at the WTO. We are committed to supporting Africa’s integration into the global trading system. The cornerstone of our trade relationship with sub-Saharan Africa is the African Growth and Opportunity Act—known as AGOA. Of all of our trade preference programs, AGOA provides the most liberal trade access to the U.S. market.

Exports from Africa to the United States under the AGOA have grown to $34.9 billion in 2012. While oil and gas still represent a large portion of Africa’s exports, it is important to recognize that non-petroleum exports under AGOA have tripled to nearly $5 billion since 2001, when AGOA went into effect. And, compared to a decade ago, more than twice the number of eligible countries are exporting non-petroleum goods under AGOA.

South Africa, in particular, has made great strides in diversifying its exports to the United States. Thanks to AGOA, the United States is now South Africa’s main export market for passenger cars, representing more than 50% of exported value in 2012. Because AGOA is such an important mechanism for African countries to gain access to the U.S. market, the Administration is committed to working with Congress on an early, seamless renewal of AGOA. Our trade relationship with Africa goes beyond AGOA. For instance, AGOA represents only one-quarter of South African exports to the United States. The composition of South Africa’s exports to the United States, moreover, reflects complex interdependencies and industrial goods.

And, our trade relationship with Africa is not just about one-way trade. There is an immense opportunity for U.S. companies to do business on the continent.

We recently launched the “Doing Business in Africa Campaign” to help American businesses identify and seize upon trade and investment opportunities in Africa. The campaign was announced in Johannesburg, in part, because South Africa can play a prominent role in directing U.S. investment into other parts of the continent.

Although progress has been made on diversifying exports beyond energy, there is much more to be done. African ingenuity and entrepreneurship must be unleashed to drive innovation and growth throughout the continent. This requires closer integration to share ideas, transfer knowledge, and partner on solutions. Through AGOA and the “Doing Business in Africa Campaign”, we are promoting a business climate in Africa that enables and encourages trade and investment. However, realizing these goals is goes beyond trade preferences and commercial linkages.

Africa is also featured in America’s vision for global trade in the 21st century.

For example, we recently launched the U.S.-East African Community Trade and Investment Partnership—the first of its kind—to expand two-way trade and investment. The Partnership is designed to build confidence among the private sector by building a more open and predictable business climate in East Africa. We are considering a variety of mechanisms to accomplish this, including a regional investment treaty and trade facilitation agreement. The Partnership highlights our desire to help Africa integrate and compete in today’s global economy.

I will conclude with one final point. I began by saying that trade is at the heart of Africa’s economic resurgence. Trade is also at the heart of America’s economic recovery. We have a common interest and a common goal.

When it comes to enhanced trade, what is good for Africa is good for America. And what is good for America is good for Africa.

Thank you.


SOURCE

US Department of State

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

China and Russia commit to World Energy Congress

Posted on 14 May 2013 by Africa Business

“Most important energy event in the world this year”

SEOUL – May 14, 2013: The Chinese and Russian governments have committed to sending high-level delegations to the World Energy Congress in South Korea in October, organizers said.

The Organizing Committee for the 2013 World Energy Congress said it had been notified that China’s National Energy Administration (NEA) would send a ministerial-level delegation to the event and that the government body had advised Chinese energy companies of its plan to attend.

The Chinese delegation will be one of the largest to the Congress, which will host up to 5,000 delegates from around the world, organizers said.

The Committee further announced that Alexander Novak, the Minister of Energy of the Russian Federation, would lead a delegation that will include the Russian ministries of Natural Resources and Environment, and of Foreign Affairs, as well as Gazprom, Transneft, Rosneft, RusHydro, the State Atomic Energy Corporation and other major energy companies.

The Russian delegation is planning a “Russia Day” event at the Congress.

The World Energy Congress is the world’s premier energy gathering and will take place on 13–17 October in the city of Daegu.

More than 200 prominent speakers, including energy ministers, industry CEOs and top experts and researchers, will answer the most pressing questions facing the global energy industry today

Under the theme of ‘Securing Tomorrow’s Energy Today’, topics range from the future prospects of the oil & gas, coal, nuclear, and renewables sectors to the tough policy decisions needed to balance the often conflicting priorities of energy security, universal access to affordable energy, and environmental protection. Delegates will also be given insights into how finance and innovation are shaping our energy future.

“We are delighted with the decision by the governmental and industry leaders in China and Russia,” said Dr. Christoph Frei, Secretary General of the London-based World Energy Council, which hosts the triennial event. “Having just been in China and Russia I know that this high level participation in the Congress will provide a fascinating overview of the opportunities and challenges of our energy world in transition. Such engagement by the world’s biggest players is crucial for a meaningful event.”

“Both countries are in the centre of many critical energy developments. We want to understand, within the global energy transformation, whether there is a refocus of ambition within the respective governments,” he said.

“We look forward to hearing more about developments in Russia and the energy challenges and opportunities in China at the World Energy Congress in October,” said Cho Hwan-eik, Chair of the Organising Committee of the 2013 World Energy Congress.

He added: “This will be the first time in the 90-year history of the event that China will have participated in such a significant way. For both the Chinese and Russians now to commit to the Daegu event underscores the fact that the Congress is the most important event on the global energy calendar this year.”

The Organising Committee also confirmed that a number of other governments are currently planning significant activity for the Congress. Mr. Cho added, “The discussions we are having with many governments at this early stage in our planning only serve to highlight the importance of this global event being staged in the heart of Asia at a time of significant transition in the energy sector.”

Media Enquiries:

Organizing Committee, World Energy Congress

Inang Park

Tel: +82 (2) 739 7016

M: 010 3213 7465

Email: inang.park@insightcomms.com

John Burton

Tel: +82 (2) 739 7045

M: +82 (0)10 2437 6265

Email: john.burton@insightcomms.com

World Energy Congress – international

Seán Galvin

Tel: +44 (0)20 7269 7133

M: +44 (0)7788 568 245

Email: sean.galvin@fticonsulting.com

World Energy Council

Monique Tsang

Tel: +44 (0)20 3214 0616

Email: tsang@worldenergy.org

About the World Energy Congress

The World Energy Congress is the world’s premier energy gathering. The triennial World Energy Congress has gained recognition since the first event in 1923 as the premier global forum for leaders and thinkers to debate solutions to energy issues. In addition to the discussions, the event provides an opportunity for executives to display their technologies and explore business opportunities. With the upcoming Congress in Daegu the event will have been held in 20 major cities around the world since its founding.

Further details at www.daegu2013.kr and @WECongress

About the World Energy Council (WEC)

The World Energy Council (WEC) is the principal impartial network of leaders and practitioners promoting an affordable, stable and environmentally sensitive energy system for the greatest benefit of all. Formed in 1923, WEC is the UN-accredited global energy body, representing the entire energy spectrum, with more than 3000 member organisations located in over 90 countries and drawn from governments, private and state corporations, academia, NGOs and energy related stakeholders. WEC informs global, regional and national energy strategies by hosting high-level events, publishing authoritative studies, and working through its extensive member network to facilitate the world’s energy policy dialogue.

Further details at www.worldenergy.org and @WECouncil

Bookmark and Share

Comments (0)

AfricaBusiness.com Newsletter

* required

*



AfricaBusiness.com Newsletter



Business in UAE
Copyright © 2009 - 2016. African Business Environment. All Rights Reserved. AfricaBusiness.com Business Magazine