400+ attendees, 50+ speakers and 20+ sponsors are gathering 8-9 June in Cape Town for the New Energy Update series of conferences, comprising of CSP Today South Africa, PV Insider South Africa and Wind Energy Update South Africa Tag 1.
Custom Search

Money Transfers Job Africa Map Weather

Tag Archive | "range"

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Lithium Market Becoming More Reliant on Batteries for Continued Strong Demand Growth

Posted on 18 May 2013 by Africa Business

Rise in Consumption and Future Demand Driven by Lithium-ion Batteries

Roskill estimates that rechargeable batteries accounted for 27% of global lithium consumption in 2012, up from 15% in 2007 and 8% in 2002. This end-use was responsible for 44% of the net increase in lithium consumption over the last ten years, and 70% over the last five years. In the base-case growth scenario it is expected to contribute 75% of the growth in forecast demand to 2017, when total demand for lithium is expected to reach slightly over 238,000t lithium carbonate equivalent (LCE).

Other end-uses, including glass-ceramics, greases and polymers, have also shown high rates of growth, but are predicted to moderate over the next five years as emerging economy growth slows. The lithium industry is therefore becoming more reliant on rechargeable batteries to sustain high rates of future demand growth. In addition, in the period to 2017 Roskill forecasts that the main market driver for lithium-ion batteries will gradually switch from portable consumer electronics to electric vehicles, especially hybrid variants.

Reflecting the concentration of lithium-ion battery manufacturers and associated cathode material producers in China, Japan and South Korea, the East Asia region has become an increasingly important consumer of lithium products over the last decade. In 2012, East Asia accounted for 60% of total global consumption with Europe accounting for a further 24% and North America 9%.

Growing Supply-side Pressure is Predicted to Stall Further Lithium Price Rises

Roskill’s analysis suggests that the price of technical-grade lithium carbonate, the main product produced and consumed in the lithium market, recovered some of its global economic downturn losses as the market tightened in 2012, averaging US$5,300/t CIF, up 15% from 2010. This is below the 2007 peak of US$6,500/t, but well above the US$2,000-3,000/t levels seen in the early 2000s.

Lithium extraction, which totalled over 168,000t LCE in 2012, is undertaken predominately in Australia, Chile, Argentina and China, with roughly half of lithium output from hard rock sources and half from brine. Production is dominated by Talison Lithium in Australia, SQM and Rockwood Lithium in Chile, and FMC in Argentina. Just over two-thirds of lithium minerals extracted in Australia are processed into downstream chemical products in China, where producers such as Tianqi Lithium (who recently acquired Talison to secure a captive supply of mineral feedstock) operate mineral conversion plants.

Galaxy Resources commissioned a new 17,000tpy LCE mineral conversion plant in China in 2012. Canada Lithium is in the process of commissioning a 20,000tpy LCE plant in Quebec and several existing Chinese mineral conversion plants are also expanding capacity. FMC has increased brine-based processing capacity by a third in Argentina, while nearby Orocobre is also constructing a new brine-based operation due to be completed in 2014. In addition, Rockwood Lithium plans to complete a 20,000tpy LCE expansion in Chile in 2014. Combined, this additional capacity totals just under 100,000tpy LCE, enough to meet forecast demand to 2017.

As the opening of new and expanded capacity is concentrated over the next two years, Roskill forecasts that the lithium market could witness increased competition and supply-side pressure on pricing, with prices for technical-grade lithium carbonate potentially falling back to around US$5,000/t CIF in 2014.

Lithium: Market Outlook to 2017 (12th edition)is available at a price of £4900 / US$7900 / €6200 from Roskill Information Services Ltd, 54 Russell Road, London SW19 1QL ENGLAND.

Tel: +44-(0)20-8417-0087. Fax +44-(0)20-8417-1308.

Email: info@roskill.co.uk Web: http://www.roskill.com/lithium

Note to editors

The report contains 426 pages, 245 tables and 99 figures. It provides a detailed review of the industry, with subsections on the activities of the leading producing companies. It also analyses consumption, trade and prices.

Table of Contents

Page

1.         Summary    1

2.         Lithium Mineralogy, Occurrences and Reserves    10

2.1        Occurrence of lithium    10

2.1.1      Lithium minerals    10

2.1.2      Lithium clays    12

2.1.3      Lithium brines    12

2.2        Lithium reserves    14

3.         Lithium mining and processing    16

3.1        Extraction and processing of lithium brines    17

3.1.1      Other methods of brine extraction    20

3.2        Mining and processing of lithium minerals    21

3.3        Processing lithium mineral concentrates to lithium compounds    23

3.4        Processing lithium bearing clays into lithium compounds    26

3.5        Lithium compounds and chemicals    27

3.6        Production costs    30

4.         Production of lithium    34

4.1        Lithium production by source    35

4.1.1      Production of Lithium Minerals    37

4.1.2      Production from Lithium Brines    39

4.1.3      Production of lithium compounds from mineral conversion    41

4.1.4      Production of downstream lithium chemicals    43

4.2        Outlook for production capacity of lithium to 2017    44

4.2.1      Outlook for production capacity of lithium minerals    45

4.2.2      Outlook for lithium production capacity from brines    48

4.2.3      Outlook on lithium compound production from mineral conversion    51

4.3        Forecast production of lithium to 2017    52

5.         Review of lithium producing countries    55

5.1        Afghanistan 55

5.2        Argentina 56

5.2.1      FMC Litihum (MineradelAltiplano S.A.)    58

5.2.2      ADY Resources    59

5.2.3      Lithium Americas    61

5.2.4      Galaxy Resources (Lithium 1)    66

5.2.4.1    Sal de Vida Project    66

5.2.4.2    James Bay Hard-rock Lithium Project    68

5.2.5      Orocobre Ltd.    69

5.2.5.1    Salar de Olaroz    71

5.2.5.2    Salinas Grandes (Cangrejillo)    74

5.2.5.3    Guayatoyoc Project    74

5.2.5.4    Cauchari Project    75

5.2.6      Rodinia Lithium Inc.    76

5.2.6.1    Rodinia Lithium USA 78

5.2.7      Marifil Mines Ltd.    78

5.2.8      International Lithium Corporation    79

5.2.9      Other prospects for Lithium Production    79

5.3        Australia 80

5.3.1      Talison Lithium    82

5.3.1.1    Resources and Reserves    82

5.3.1.2    Production    85

5.3.1.3    Products    86

5.3.2      Galaxy Resources Ltd.    87

5.3.2.1    Reserves and Resources    88

5.3.2.2    Production    90

5.3.3      Reed Resources Ltd.    91

5.3.4      Altura Mining Ltd.    92

5.3.5      Artemis Resources    93

5.3.6      Amerilithium    93

5.3.7      Reward Minerals    93

5.4        Austria 93

5.5        Belgium 94

5.6        Bolivia 96

5.6.1      Salar de Uyuni 97

5.6.2      Salar de Coipasa    99

5.6.3      New World Resource Corp.    99

5.7        Brazil 100

5.7.1      CompanhiaBrasileira de Litio    102

5.7.2      Arqueana de Minérios e Metais Ltda.    103

5.7.3      Advance Metallurgical Group (AMG)    104

5.8        Canada 104

5.8.1      Lithium resources in Canada 105

5.8.2      Canadian trade in lithium    107

5.8.3      Past producers of lithium in Canada 108

5.8.3.1    Tantalum Mining Corp. of Canada Ltd. (TANCO)    108

5.8.4      Potential new producers of lithium in Canada 109

5.8.4.1    Canada Lithium Corp.    109

5.8.4.2    Nemaska Lithium    112

5.8.4.3    Avalon Rare Metals Inc.    115

5.8.4.4    Perilya Limited    116

5.8.4.5    Rock Tech Lithium Inc.    117

5.8.4.6    Critical Elements Corporation    120

5.8.4.7    Glen Eagle Resources Inc.    120

5.8.4.8    Aben Resources Ltd.    121

5.8.4.9    Toxco Inc. Canada 122

5.8.4.10   Other Canadian Lithium Projects    122

5.9        Chile 126

5.9.1      Chilean lithium reserves    127

5.9.2      Chilean lithium production    127

5.9.3      Special Lithium Operations Contracts (CEOLs)    128

5.9.4      SociedadQuímica y Minera    129

5.9.4.1    Reserves and Resources    130

5.9.4.2    Production    131

5.9.4.3    Products    132

5.9.4.4    Markets    134

5.9.4.5    Exports    135

5.9.5      Rockwood Litihum (Salar de Atacama and La Negra Plant)    136

5.9.6      Simbalik Group    138

5.9.7      Li3 Energy Inc.    139

5.9.7.1    Maricunga Property    139

5.9.7.2    Li3 Energy Peruvian Projects    141

5.9.8      First Potash Corp.    141

5.9.9      CODELCO    142

5.9.10 Mammoth Energy Group Inc.    142

5.9.11 Lomiko Metals Inc.    143

5.9.12 Errázuriz Lithium    143

5.9.13 Exports of litihum from Chile 143

5.10       China 146

5.10.1     Chinese reserves of lithium    147

5.10.1.1   Lithium Mineral Reserves    147

5.10.1.2   Lithium Brine Reserves    148

5.10.2     Production of lithium    149

5.10.2.1   Mineral Production    150

5.10.2.2   Brine Production    151

5.10.2.3   Lithium Chemicals and Metal Production    152

5.10.3     Chinese trade in lithium    155

5.10.4     Chinese lithium brine producers    157

5.10.4.1   Tibet Lithium New Technology Development Co. Ltd.    157

5.10.4.2   Qinghai CITIC Guoan Technology Development Co. Ltd.    159

5.10.4.3   Qinghai Salt Lake Industry Co. Ltd.    160

5.10.4.4   Qinghai Lanke Lithium Industry Co. Ltd.    161

5.10.4.5   Tibet Sunrise Mining Development Ltd.    162

5.10.4.6   China MinMetals Non-Ferrous Metals Co. Ltd    163

5.10.5     Chinese lithium mineral producers    163

5.10.5.1   Fujian Huamin Import & Export Co. Ltd.    163

5.10.5.2   YichunHuili Industrial Co. Ltd.    164

5.10.5.3   GanZiRongda Lithium Co., Ltd.    164

5.10.5.4   Sichuan HidiliDexin Mineral Industry    165

5.10.5.5   Xinjiang Non-Ferrous Metals (Group) Ltd.    166

5.10.6     Chinese lithium mineral producers with mineral conversion capacity    166

5.10.6.1   Jiangxi Western Resources Lithium Industry    166

5.10.6.2   Sichuan Aba Guangsheng Lithium Co. Ltd.    167

5.10.6.3   Minfeng Lithium Co. Ltd.    167

5.10.6.4   Sichuan Ni&CoGuorun New Materials Co. Ltd.    168

5.10.7     Chinese mineral conversion plants    169

5.10.7.1   Sichuan Tianqi Lithium Shareholding Co. Ltd.    169

5.10.7.2   Galaxy Resources (Jiangsu Lithium Carbonate Plant)    171

5.10.7.3   General Lithium (Haimen) Corp.    172

5.10.7.4   China Non-Ferrous Metal Import & Export Xinjiang Corp.    173

5.10.7.5   Sichuan State Lithium Materials Co. Ltd.    174

5.10.7.6   Jiangxi Ganfeng Lithium Co. Ltd.    174

5.10.7.7   Sichuan Chenghehua Lithium Technology Co. Ltd.    176

5.10.8     Chinese lithium chemical producers    176

5.10.9     Specialist lithium bromide producers    177

5.10.10 Specialist lithium metal producers    178

5.11       Czech Republic 179

5.12       Democratic Republic of Congo (DRC)    179

5.13       Finland 180

5.13.1     KeliberOy    180

5.13.2     Nortec Minerals Corp.    181

5.13.3     Leviäkangas Deposit    182

5.13.4     Syväjärvi Deposit    182

5.14       France 182

5.15       Germany 184

5.15.1     Rockwood Lithium (Langelsheim Plant)    185

5.15.2     Helm AG    185

5.15.3     Lithium exploration in Germany 185

5.16       Greece 186

5.17       India 186

5.17.1     FMC India Private Ltd.    188

5.17.2     Rockwood Lithium    188

5.18       Ireland 189

5.19       Israel 189

5.20       Japan 190

5.21       Kazakhstan 192

5.22       Mali 193

5.23       Mexico 193

5.23.1     LitioMex S.A. de C.V. (PieroSutti S.A. de C.V.)    193

5.23.2     First Potash Corp. (Mexico)    195

5.23.3     Bacanora Minerals Ltd.    195

5.24       Mongolia 196

5.25       Mozambique 196

5.26       Namibia 197

5.27       Netherlands 198

5.28       Portugal 199

5.28.1     SociedadMineira de Pegmatites    200

5.29       Russia 200

5.29.1     Russian Lithium Reserves and Resources    201

5.29.2     Russian Lithium Production    202

5.29.2.1   JSC Chemical and Metallurgical Plant    202

5.29.2.2   JSC Novosibirsk Chemical Concentration Plant    203

5.29.3     Russian Imports and Exports of Lithium    204

5.30       Serbia    205

5.31       South Africa 206

5.32       South Korea 206

5.33       Spain 207

5.33.1     Minera Del Duero 208

5.33.2     Solid Resources Ltd.    209

5.34       Taiwan 209

5.35       Tajikistan 210

5.36       Turkey 210

5.37       UK    211

5.38       Ukraine 212

5.39       USA 212

5.39.1     Trade in lithium to/from the USA 213

5.39.2     Rockwood Lithium (Chemetall Group)    214

5.39.2.1   Silver Peak, Kings Mountain and New Johnsonville operations (USA)    215

5.39.3     FMC Corporation    216

5.39.3.1   FMC Lithium    217

5.39.3.2   Other FMC Corporation facilities    218

5.39.4     Western Lithium Corporation    219

5.39.5     Simbol Materials Corp.    222

5.39.6     Albemarle Corporation    223

5.39.7     Toxco Inc.    223

5.39.8     AusAmerican Mining Corp. Ltd.    223

5.39.9     Other USA Companies    224

5.40       Uzbekistan 226

5.41       Zimbabwe 226

5.41.1     Bikita Minerals Ltd    227

5.41.2     Zimbabwe Mining Development Corporation    228

5.41.3     Premier African Minerals    228

5.41.4     Cape Range Ltd.    229

6.         International trade in lithium    230

6.1        Trade in lithium carbonate    230

6.2        Trade in lithium hydroxide and oxides    233

6.3        Trade in lithium chloride    236

6.4        Trade in mineral concentrates    237

6.5        Trade in lithium brines    238

7.         Consumption of lithium    239

7.1        Consumption of lithium by end-use    239

7.2        Consumption of lithium by country/region    243

7.3        Consumption of lithium by product    245

7.4        Outlook for consumption of lithium by end-use    247

7.5        Outlook for lithium consumption by product    251

8.         Use of lithium in rechargeable batteries    253

8.1        Types of rechargeable batteries    253

8.1.1      Lithium-ion batteries    254

8.1.2      Lithium metal polymer batteries    256

8.1.3      Lithium-sulphur batteries    256

8.1.4      Lithium-air batteries    258

8.1.5      NiMH and NiCd batteries    258

8.2        Production of rechargeable batteries    258

8.2.1      Producers of rechargeable lithium batteries    261

8.2.2      Producers of nickel metal hydride batteries    262

8.3        Production of rechargeable lithium battery materials    262

8.3.1      Producers of rechargeable lithium battery materials    264

8.3.1.1    Cathode materials    264

8.3.1.2    Electrolyte salts    267

8.3.1.3    Anode materials    268

8.4        Consumption of rechargeable lithium batteries    268

8.4.1      Computing, communication and consumer (3C) market    269

8.4.2      Power devices and motive power    270

8.4.3      Heavy duty applications    272

8.4.4      Transportation    272

8.5        Consumption of NiMH and NiCd batteries    274

8.6        Consumption of lithium in rechargeable batteries    274

8.7        Outlook for demand for rechargeable batteries    278

8.8        Outlook for consumption of lithium in rechargeable batteries    281

9.         Use of lithium in ceramics    284

9.1        Use of lithium in ceramics    284

9.2        Production and consumption of ceramics    286

9.2.1      Ceramic tiles    287

9.2.1.1    Producers of ceramic tiles    289

9.2.2      Sanitaryware    291

9.2.2.1    Producers of sanitaryware    291

9.2.3      Tableware    293

9.2.3.1    Producers of tableware    294

9.2.4      Cookware and bakeware    295

9.3        Production and consumption of glazes and enamels    295

9.3.1      Producers of glazes and enamels    297

9.4        Outlook for ceramics production and consumption    298

9.5        Consumption of lithium in ceramics    299

9.5.1      Outlook for lithium demand in ceramics    300

10.        Use of lithium in glass-ceramics    302

10.1       Use of lithium in glass-ceramics    302

10.2       Production and consumption of glass-ceramics    304

10.2.1     Producers of glass-ceramics    305

10.3       Consumption of lithium in glass-ceramics    306

11.        Use of lithium in lubricating grease    309

11.1       Types of lubricating grease    309

11.2       Production of grease    311

11.2.1     Producers of lithium grease    314

11.3       Consumption of lithium greases    317

11.4       Consumption of lithium in greases    320

11.4.1     Outlook for demand for lithium in greases    321

12.        Use of lithium in glass    323

12.1       Use of lithium in glass    323

12.2       Production and consumption of glass    325

12.2.1     Container glass    326

12.2.2     Fibreglass    329

12.2.3     Speciality glass    330

12.3       Consumption of lithium in glass    330

12.3.1     Outlook for demand for lithium in glass    331

13.        Use of lithium in metallurgical powders    333

13.1       Continuous casting    333

13.1.1     Producers of continuous casting mould powders    334

13.1.2     Continually cast steel production    334

13.1.3     Consumption of continuous casting mould powders    335

13.1.4     Consumption of lithium in continuous casting mould powders    335

13.2       Traditional metal casting    337

13.3       Outlook for demand for lithium in casting powders    337

14.        Use of lithium in polymers    338

14.1       Types of polymers    338

14.2       Production of polymers    340

14.2.1     Producers of polymers    342

14.3       Consumption of polymers    344

14.4       Consumption of lithium in polymers    348

14.4.1     Outlook for lithium demand in polymers    348

15.        Use of lithium in air treatment    350

15.1       Absorption chillers    350

15.1.1     Production of absorption chillers    351

15.1.2     Producers of adsorption chillers    352

15.1.3     Producers of lithium bromide for absorption chillers    354

15.1.4     Consumption of lithium in absorption chillers    356

15.2       Dehumidification    357

15.2.1     Production of desiccant dehumidification systems    358

15.2.2     Producers of desiccant dehumidification systems    358

15.2.3     Consumption of lithium in desiccant dehumidifiers    359

15.3       Air purification    359

15.5       Outlook for demand for lithium in air treatment    360

16.        Use of lithium in primary batteries    362

16.1       Types of primary batteries    362

16.2       Production of lithium primary batteries    365

16.2.1     Producers of lithium primary batteries    367

16.3       Trade in primary batteries    369

16.4       Production of primary lithium battery materials    370

16.4.1     Producers of lithium primary battery anodes    371

16.5       Consumption of lithium primary batteries    373

16.5.1     Outlook for primary lithium battery consumption    374

16.6       Consumption of lithium in primary batteries    374

16.6.1     Outlook for demand for lithium in primary batteries    377

17.        Use of lithium in aluminium smelting    378

17.1       Process of aluminium smelting    378

17.2       Consumers of lithium in aluminium smelting    380

17.3       Consumption of lithium in aluminium smelting    382

17.3.1     Outlook for lithium demand in aluminium smelting    383

18.        Minor end-uses for lithium    385

18.1       Sanitization    385

18.2       Organic synthesis    386

18.3       Construction    388

18.4       Alkyd resins    388

18.5       Alloys    391

18.5.1     Aluminium-lithium alloy    391

18.5.1.1   Producers of aluminium-lithium alloys    394

18.5.1.2   Applications for aluminium-lithium alloys    395

18.5.1.3   Consumption of lithium in aluminium-lithium alloys    398

18.5.1.4   Outlook for demand for lithium in aluminium-lithium alloys    398

18.5.2     Magnesium-lithium alloy    400

18.6       Electronics    400

18.7       Analytical agents    402

18.8       Dyestuffs    402

18.9       Metallurgy    402

18.10      Photographic industry    402

18.11      Welding fluxes    402

18.12      Electrochromic glass    403

18.13      Pharmaceuticals    403

18.13.1    Producers of lithium-based pharmaceuticals    404

18.13.2    Production and consumption of lithium-based pharmaceuticals    404

18.13.3    Consumption of lithium in pharmaceuticals    405

18.14      Speciality lithium inorganics    405

19.        Prices of lithium    408

19.1       Technical-grade lithium mineral prices    409

19.2       Chemical-grade spodumene prices    412

19.3       Technical-grade lithium carbonate prices    413

19.4       Battery-grade lithium carbonate    415

19.5       Technical-grade lithium hydroxide prices    416

19.6       Battery-grade lithium hydroxide prices    418

19.7       Lithium chloride prices    419

19.8       Lithium metal prices    420

19.9       Outlook for lithium prices    421

19.9.1     Technical-grade lithium carbonate prices    421

19.9.2     Battery-grade lithium carbonate prices    424

19.9.3     Technical-grade lithium mineral prices    425

19.9.4     Chemical-grade spodumene prices    425

19.9.5     Lithium hydroxide prices    426

List of Tables

Page

Table 1: World: Forecast nominal and real prices for technical-grade lithium carbonate, 2012 to 2017     8

Table 2: Properties of lithium    10

Table 3: Significant lithium minerals    11

Table 4: Major lithium bearing smectite group members    12

Table 5: Brine concentrations at selected deposits    13

Table 6: Lithium reserves by country     15

Table 7: Composition of standard lithium concentrates     22

Table 8: Specifications for lithium carbonate produced by SQM and Rockwood Lithium     28

Table 9: Specifications for lithium carbonate produced by other suppliers     28

Table 10: Battery grade lithium hydroxide product specifications of major producers      29

Table 11: Production of lithium by country and company, 2005 to 2012     35

Table 12: Capacity and production of lithium minerals by company, 2011 to 2012     39

Table 13: Capacity and production of lithium compounds from brine-based producers, 2011 to 2012     40

Table 14: Capacity and production of lithium mineral converters, 2011 to 2012     42

Table 15: Production of lithium compounds from minerals, 2005 to 2012     43

Table 16: Planned expansions as reported by existing lithium mineral producers to 2017     46

Table 17: Potential lithium mineral producers to 2017     47

Table 18: Planned expansions by existing lithium brine producers to 2017     49

Table 19: Potential new lithium brine projects to 2017     50

Table 20: Planned expansions to production capacity for existing and potential mineral conversion plants     51

Table 21: Afghanistan: Spodumene bearing pegmatites identified in Nuristan, Badakhshan, Nangarhar, Lagman and Uruzgan provinces    55

Table 22: Argentina: Exports of lithium carbonate, 2004 to 2012     57

Table 23: Argentina: Exports of lithium chloride, 2004 to 2012     58

Table 24:FMC: Brine reserves at the Salar del Hombre Muerto    58

Table 25: FMC: Production and value of lithium carbonate and chloride at the Salta plant, Argentina 2005 to 2012     59

Table 26: ADY Resources: Salar del Rincón reserve estimation, 2007    60

Table 27: Lithium Americas: Lithium and potash resource estimation for the Cauchari-Olaroz property, July 2012 61

Table 28: Lithium Americas: Lithium and potash reserve estimation for the Cauchari-Olaroz property, July 2012 61

Table 29: Lithium Americas: Estimated capital costs for Lithium carbonate production at the Cauchari-Olaroz project, July 2012 63

Table 30: Lithium Americas: Estimated operating costs for Cauchari-Olaroz project, July 2012 65

Table 31: Galaxy Resources: Resource estimation for the Sal de Vida project, January 2012 66

Table 32: Galaxy Resources: Reserve estimate for the Sal de Vida project, April 2013 67

Table 33: Galaxy Resources: Estimated capital costs for Sal de Vida project, October 2011 68

Table 34: Orocobre: Agreements between Borax Argentina and other lithium companies    70

Table 35: Orocobre: Resource estimation for the Salar de Olaroz project, May 2011 71

Table 36: Orocobre: Assay results of first battery grade lithium carbonate product from the Orocobre pilot plant    72

Table 37: Orocobre: Capital costs for 16,400tpy LCE operation at the Salar de Olaroz, May 2011 73

Table 38: Orocobre: Operating costs for battery grade lithium carbonate for the Salar de Olaroz, May 2011 73

Table 39: Orocobre: Resource estimation for the Salinas Grande project, April 2012 74

Table 40: Orocobre: Averaged assay results from pit sampling of brine at the Guayatoyoc project    75

Table 41: Orocobre: Maiden resource estimation for the Salar de Cauchari project, October 2012 75

Table 42: Rodinia Lithium: Salar de Diablillos resource estimation, March 2011 76

Table 43: Rodinia Lithium: Estimated capital costs for the Salar de Diablillos project    77

Table 44: Rodinia Lithium: Estimated operating costs for the Salar de Diablillos project    77

Table 45: Rodinia Lithium: Other Argentine lithium projects    78

Table 46: Australia: Exports of mineral substances NES (excl. natural micaceous iron oxides) 2005 to 2012     81

Table 47: Australia: Unit value of mineral substances NES (excl. natural micaeous iron oxides) 2005 to 2011     81

Table 48: Talison Lithium: Resource estimation for the Greenbushes deposit, December 2012 83

Table 49: Talison Lithium: Lithium mineral reserve estimation for the Greenbushes deposit,  December 2012    83

Table 50: Talison Lithium: Li, K and Na content of brines, Salares 7 project saline lakes 1998, (ppm)    84

Table 51: Talison Lithium: Li, K and Na content of brines, Salares 7 project saline lakes 2009, (ppm)    84

Table 52: Talison Lithium: Production and sales of lithium mineral concentrates and ores, 2005 to 2011     85

Table 53: Talison Lithium: Standard lithium mineral concentrate product specifications    87

Table 54: Galaxy Resources: Mount Cattlin mineral resource estimate, February 2011 89

Table 55: Galaxy Resources: Mount Cattlin mineral reserve estimate, December 2011 89

Table 56: Galaxy Resources: James Bay mineral resource estimate, November 2010 89

Table 57: Galaxy Resources: Mt. Cattlin mine and plant production, Q3 2010 – Q4 2011    90

Table 58: Reed Resources : Mt Marion resource estimation, July 2011 91

Table 59: Altura: Mineral resource estimation for the Pilgangoora lithium project, October 2012 92

Table 60: Belgium: Trade is lithium carbonate, 2005 to 2012     95

Table 61: Belgium: Trade in lithium hydroxide and oxide, 2005 to 2012     96

Table 62: Salars and Lagunas in Bolivia identified by Gerencia Nacional de Recursos Evaporíticos    97

Table 63: Results of sampling campaign by Université de Liegé and Universidad Tecnica de Oruro at the Salar de Coipasa, 2002    99

Table 64: Assay data for brines intercepted during drilling at the Pastos Grandes Salar, August 2011 100

Table 65: Brazil: Lithium resource estimation by mineral type, 2009    101

Table 66: Brazil: Trade in lithium chemicals and concentrates, 2004 to 2011     102

Table 67: CBL: Production of lithium concentrates and lithium salts, 2005 to 2011    102

Table 68: Arqueana: Production of lithium concentrates, 2008 to 2011    103

Table 69: Canada: Resources estimations for Canadian lithium projects    106

Table 70: Canada: Imports and exports of lithium compounds 2005 to 2012     108

Table 71: TANCO: Spodumene concentrate production 2005 to 2011     109

Table 72: Canada Lithium: Resource estimation for the Quebec Lithium project, December 2011 109

Table 73: Canada Lithium: Reserve estimation for the Quebec Lithium project, December 2011 110

Table 74: Canada Lithium: Estimated capital expenditure for Quebec Lithium project (inc.LiOH and Na2SO4 plant costs), October 2012 111

Table 75 :Canada Lithium: Estimated operating expenditure for Quebec Lithium project, October 2012 111

Table 76: Nemaska Lithium: Resource estimation for the Whabouchi project, June 2011 113

Table 77: Nemaska Lithium: Reserve estimation for the Whabouchi project, October 2012 113

Table 78: Avalon Rare Metals: Separation Rapids NI 43-101 resource and reserve estimation, 1999    116

Table 79: Perilya Ltd: Mineral resource estimation for Moblan deposit, May 2011 117

Table 80: Rock Tech Lithium: Structure of the Georgia Lake project, November 2011 118

Table 81: Rock Tech Lithium: Updated mineral resource estimation for Georgia Lake project, July 2012 119

Table 82: Glen Eagle: Resource estimation for Authier lithium property, January 2012 121

Table 83: Canada: Lithium exploration projects in Canada with uncompleted scoping studies or PFS in October 2012 122

Table 84: Chile: Lithium carbonate, chloride and hydroxide production, 2004 to 2011     128

Table 85: Chile: Special operating licence bidders for the September 2012 auction    129

Table 86: SQM: Majority shareholders of SQM as of December 31st 2011    130

Table 87: SQM: Reserves within brines at the Salar de Atacama project    131

Table 88: SQM: Production, revenue and value per tonne of lithium compounds, 2003 to 2012    132

Table 89: SQM: Specifications for lithium carbonate     133

Table 90: SQM: Specifications for lithium hydroxide     134

Table 91: RWL: Gross tonnage, value and unit value of lithium carbonate exports, 2006 to 2012    137

Table 92: RWL: Gross tonnage, value and unit value of lithium chloride exports, 2006 to 2012    138

Table 93: Li3 Energy: Resource estimation for the Maricunga property, April 2012 140

Table 94: Chile: Exports of lithium carbonate by destination, 2004 to 2011    144

Table 95: Chile: Lithium carbonate export volume, value and unit price by company, 2005 to 2011    144

Table 96: Chile: Lithium chloride exports by destination, 2004 to 2012    145

Table 97: Chile: Lithium hydroxide exports by destination, 2004 to 2012    146

Table 98: China : Estimated resources and reserves of both lithium mineral and brine operations and projects    148

Table 99: China: Production of lithium, 2003 to 2012    149

Table 100: China: Producers of lithium minerals, 2011 to 2012    151

Table 101: China: Production and capacity of Chinese lithium brine operations, 2011    152

Table 102: China: Mineral conversion plant production and production capacity, 2012    154

Table 103: China: Producers of battery grade lithium metal, 2012    154

Table 104: China: Imports and exports of lithium carbonate, 2005 to 2012     155

Table 105: China: Imports and exports of lithium chloride, 2005 to 2012     156

Table 106: China: Imports and exports of lithium hydroxide, 2005 to 2012     157

Table 107: China: Imports and exports of lithium oxide, 2005 to 2012     157

Table 108: Tibet Lithium New Technology Development: Lithium production, 2010 to 2012    158

Table 109: Qinghai CITIC: Lithium carbonate production, 2008 to 2012     160

Table 110:  Dangxiongcuo reserve estimation from 2006 qualifying report    163

Table 111: Jiangxi Western Resources: Lithium Production, 2010    167

Table 112: Sichuan Tianqi: Production and sales of lithium products, 2010 to 2011     169

Table 113: Galaxy Resources: Battery grade lithium carbonate chemical specifications    172

Table 114: KeliberOy: Claims, reservation and mining concessions for lithium projects held by Keliber in Finland, 2012    181

Table 115: France: Imports and exports of lithium carbonate, 2005 to 2012     183

Table 116: France: Imports and exports of lithium hydroxide and oxide, 2005 to 2012     184

Table 117: Germany: Imports and exports of lithium carbonate, 2005 to 2012     184

Table 118: India: Trade in lithium hydroxide and oxides, 2005 to 2012     187

Table 119: India: Trade in lithium carbonate, 2005 to 2012     187

Table 120: India: Producers of lithium chemicals    188

Table 121: Japan: Trade in lithium carbonate, 2005 to 2012     190

Table 122: Japan: Trade in lithium hydroxide and oxide, 2005 to 2012     191

Table 123: Mexico: LitioMex S.A. concessions and resource estimations    194

Table 124: Namibia: Production of lithium minerals, 1990 to 1998     197

Table 125: Netherlands: Trade in lithium carbonate, 2005 to 2012     198

Table 126: Netherlands: Trade in lithium hydroxide and oxide, 2005 to 2012     199

Table 127: SociedadMineira de Pegmatites: Production of Lithium, 2004 to 2012     200

Table 128: Russia: Deposits of lithium    201

Table 129: Russia: Imports of lithium carbonate, 2002 to 2012     204

Table 130: Russia: Exports of lithium hydroxide, 2002 to 2012     204

Table 131: Russia: Imports of lithium hydroxide, 2002 to 2012     205

Table 132: South Korea: Trade in lithium carbonate, 2005 to 2012     207

Table 133: South Korea: Trade in lithium hydroxide, 2005 to 2012     207

Table 134: Spain: Imports of lithium compounds, 2005 to 2012     208

Table 135: Minera Del Duero: Production of lepidolite in Spain, 2003 to 2011     208

Table 136: Inferred mineral resource estimation for the Doade-Presquerias project, October 2011 209

Table 137: Taiwan: Imports of lithium carbonate, 2005 to 2012     210

Table 138: UK: Imports of lithium carbonate and lithium hydroxides and oxides 2005 to 2012     211

Table 139: USA: Imports and exports of lithium carbonate 2005 to 2012     213

Table 140: USA: Imports and exports of lithium oxide and hydroxide 2005 to 2012     214

Table 141: FMC: Product range    218

Table 142: WLC: Resource estimation for the Kings Valley project, January 2012 219

Table 143: WLC: Reserve estimation for the Kings Valley project, December 2011 220

Table 144: WLC: Estimated operating and capital costs for ‘Case 1′ and ‘Case 2′ scenarios at the Kings Valley project.    221

Table 145: USA: Lithium exploration projects yet to reach scoping study or PFS stage in development    224

Table 146: Zimbabwe: South African imports of mineral substances from Zimbabwe, 2005 to 2012     227

Table 147: Bikita Minerals: Mine production and lithium content 2003 to 2011    228

Table 148: World: Total exports of lithium carbonate, 2005 to 2012     230

Table 149: World: Total imports of lithium carbonate, 2005 to 2012     232

Table 150: World: Total exports of lithium hydroxide and oxide, 2005 to 2012     234

Table 151: World: Total imports of lithium hydroxide and oxide, 2005 to 2012     236

Table 152: World: Major importers and exporters of lithium chloride, 2005 to 2012     237

Table 153: World: Exports of lithium minerals by major lithium mineral producing nations (excl. China), 2005 to 2012     238

Table 154: Chile: Exports of lithium chloride brine1 by SQM to China, 2005 to 2012     238

Table 155: World: Consumption of lithium by end-use, 2002, 2007 and 2012    240

Table 156: World: Estimated consumption of lithium by country/region, 2002, 2007 and 2012     244

Table 157: World: Consumption of lithium by end-use, by product, 2012    246

Table 158: World: Forecast consumption of lithium by end-use, 2012 to 2017     248

Table 159: Japan: Producers of lithium-ion battery cathode materials, 2012    265

Table 160: South Korea: Producers of lithium-ion battery cathode materials, 2012    265

Table 161: China: Producers of lithium-ion battery cathode materials, 2012    266

Table 162: World: Producers of lithium salts for electrolytes, 2012    267

Table 163: World: Lithium battery consumption in 3C products, 2012    269

Table 164: World: Lithium battery consumption in power devices and motive power, 2012    271

Table 165: World: Lithium battery consumption in heavy duty applications, 2012    272

Table 166: World: Lithium battery consumption in transport applications, 2012    274

Table 167: World: Lithium consumption in rechargeable lithium batteries end-use, 2012    275

Table 168: World: Lithium consumption in NiMH and NiCd batteries, 2012    275

Table 169: World: Consumption of lithium in rechargeable batteries by type, 2007 to 2012     277

Table 170: Japan: Consumption of lithium in rechargeable batteries, 2007 to 2012     277

Table 171: World: Consumption of lithium in rechargeable batteries by country, 2007 to 2012     278

Table 172: World: Rechargeable lithium battery demand by market, 2012 and 2017    278

Table 173: World: Comparison of EV production estimates in 2017 by industry consultant    280

Table 174: World: Forecast rechargeable battery consumption in EVs, 2017    281

Table 175: World: Lithium consumption in rechargeable lithium batteries by end-use, 2017    281

Table 176: World: Forecast demand for lithium in rechargeable lithium batteries, 2012 to 2017     282

Table 177: World: Forecast demand for lithium in rechargeable batteries by battery type, 2012 to 2017     282

Table 178: World: Forecast demand for lithium in rechargeable batteries by product type, 2007 to 2012     283

Table 179: Typical whiteware body compositions     285

Table 180: World: Production of ceramic tiles by leading country, 2007 to 2012     287

Table 181: World: Consumption of ceramic tiles by leading countries, 2007 to 2011     289

Table 182: World: Leading ceramic tile manufacturing companies, 2010    290

Table 183: World: Leading sanitaryware manufacturing companies, 2010    292

Table 184: World: Consumption of lithium in ceramics, 2012    300

Table 185: World: Consumption of lithium in ceramics, 2007 to 2012     300

Table 186: World: Forecast demand for lithium in ceramics, 2012 to 2017     301

Table 187: Glass-ceramic matrices    302

Table 188: Compositions of commercial glass-ceramics    303

Table 189: Japan: Consumption of lithium carbonate in glass-ceramics, 2007 to 2012     306

Table 190: World: Consumption of lithium in glass-ceramics by end-use and product type, 2012     307

Table 191: World: Consumption of lithium in glass-ceramics, 2007 to 2012     307

Table 192: World: Forecast demand for lithium in glass-ceramics, 2012 to 2017     308

Table 193: Properties of commercial greases    311

Table 194: World: Producers of lubricating grease    315

Table 195: World: Forecast demand for lithium in greases, 2012 to 2017    322

Table 196: Typical batch compositions for glass by type     323

Table 197: Main sources of lithium used in glass    324

Table 198: EU: Production of glass by type, 1998 to 2012     328

Table 199: USA: Production of container glass, 1999 to 2008    328

Table 200: Typical chemical composition of types of textile-grade fibreglass     329

Table 201: World: Estimated consumption of lithium in glass, 2012     331

Table 202: World: Consumption of lithium in glass, 2007 to 2012     331

Table 203: World: Forecast demand for lithium in glass, 2012 to 2017     332

Table 204: World: Consumption of lithium in continuous casting mould powders, 2007 to 2012     336

Table 205: Japan: Consumption of lithium in fluxes, 2007 to 2012     336

Table 206: World: Forecast demand for lithium in casting powders, 2012 to 2017     337

Table 207: Microstructure of different types of polybutadienes    339

Table 208: World: Producers of SSBR, BR and SBC, 2012    343

Table 209: World: Planned new/expanded SBR, BR and SBC plants    344

Table 210: World: Forecast demand for lithium in synthetic rubber and thermoplastics, 2011 to 2017    349

Table 211: World: Capacity for lithium bromide production, end-2012     355

Table 212: Japan: Consumption of lithium bromide, 2007 to 2012    356

Table 213: World: Forecast demand for lithium in air treatment, 2012 to 2017    361

Table 214: Characteristics of primary lithium batteries    363

Table 215: Japan: Production of primary batteries by type, 1998 to 2012     367

Table 216: World: Trade in lithium primary batteries, 2007 to 2011     369

Table 217: Primary lithium batteries and their material compositions    371

Table 218: Specifications for battery-grade lithium metal     371

Table 219: World: Producers of battery-grade lithium metal, end-2012    372

Table 220: Japan: Consumption of lithium in primary lithium batteries, 2007 to 2012    375

Table 221: Japan: Unit consumption of lithium in primary batteries, 2007 to 2012    375

Table 222: World: Imports of battery-grade lithium metal, 2007 to 2012    376

Table 223: World: Forecast demand for lithium in primary batteries, 2012 to 2017    377

Table 224: Effects of additives and temperatures on properties of molten cryolite    379

Table 225: World: Aluminium smelters using Söderberg technology, end-2012    381

Table 226: World: Forecast demand for lithium in aluminium smelting, 2012 to 2017     384

Table 227: World: Consumption of lithium in other end-uses, 2007, 2012 and 2017     385

Table 228: Examples of uses for lithium in organic synthesis    387

Table 229: Physical properties of Al-Li alloys    392

Table 230: Chemical composition of Al-Li alloys     393

Table 231: Use of Al-Li alloys in selected aircraft    397

Table 232: World: Forecast demand for lithium in aluminium-lithium alloys, 2012 to 2017    399

Table 233: Properties of lithium niobate and lithium tantalite    401

Table 234: Applications for SAW components    401

Table 235: Applications for speciality inorganic lithium compounds    406

Table 236: Prices of lithium minerals, 2000-2013     410

Table 237: Comparison of prices for lithium minerals and carbonate, 2004 to 2012    411

Table 238: Comparison of prices for chemical-grade spodumene concentrate and lithium carbonate, 2004 to 2012    412

Table 239: Comparison of technical- and battery- grade lithium carbonate prices, 2004 to 2012     416

Table 240: Average values of exports/imports of lithium oxides and hydroxides by leading exporting/importing country, 2004 to 2012     417

Table 241: Average values of exports of lithium chloride by leading producing country, 2004 to 2012    420

Table 242: Average values of exports of lithium metal by leading producing country, 2004 to 2012    421

Table 243: World: Forecast nominal and real prices for technical-grade lithium carbonate, 2012 to 2017     423

Table 244: World: Forecast nominal prices for technical-grade lithium carbonate and chemical-grade lithium minerals, 2012 to 2017     425

Table 245: World: Forecast nominal prices for technical-grade lithium carbonate and technical-grade lithium hydroxide, 2012 to 2017     426

List of Figures

Figure 1: Lithium product flow chart and main end-uses, 2012     1

Figure 2: Consumption of lithium by end-use, 2000 to 2012     2

Figure 3: Production of lithium by country, 2000 to 2012     4

Figure 4: Price history of lithium carbonate, 1990 to 2012    6

Figure 5: World: Forecast real prices for technical-grade lithium carbonate, 2012 to 2017     9

Figure 6: Overview of lithium production    16

Figure 7: Extraction and processing of brines from the Salar de Atacama, Chile and Silver Peak, Nevada by Rockwood Lithium    18

Figure 8: Flow sheet showing the processing of brines at Salar de Carmen by SQM    19

Figure 9: Simplified flow sheet of the Li SX™ method patented by Bateman Lithium Projects    21

Figure 10: Simplified mineral concentrate production flow sheet for a typical hard rock lithium operation    22

Figure 11: Simplified flow sheet for lithium carbonate production from spodumene mineral concentrate using the acid-roast method    24

Figure 12: Simplified flow sheet for lithium hydroxide and lithium hydroxide monohydrate production from spodumene mineral concentrate using the lime-roast method    25

Figure 13: Simplified flow sheet for lithium carbonate production from hectorite clay developed by Western Lithium    27

Figure 14: Mining and milling costs for hard rock lithium mineral operations/projects    31

Figure 15: Lithium carbonate cash operating costs, 2012    32

Figure 16:  Potential new producers production costs    33

Figure 17: World: Production of lithium by country, 2000 to 2012     34

Figure 18: Production of lithium from mineral and brine sources, 2005 to 2012     37

Figure 19: Production of lithium minerals by company, 2012     38

Figure 20: Production of lithium from brines by country, 2005 to 2012     40

Figure 21: Planned production capacity and consumption for lithium, 2012 to 2017     45

Figure 22: Forecast production and consumption of lithium, 2012 to 2017     54

Figure 23: Pilot plant flow sheet developed for Lithium Americas at SGS Mineral Services    62

Figure 24: Brazil: Production of Lithium products 2005 to 2010     101

Figure 25: SQM: Lithium sales by destination 2011, 2009, 2007 and 2005     135

Figure 26: SQM: Destination of lithium carbonate exports, 2006 to 2011     136

Figure 27: China: Location of mineral conversion and lithium chemical/metal plants in China, 2012    153

Figure 28: Japan: Imports of lithium carbonate, hydroxide & oxide and combined LCE, 2005 to 2012     191

Figure 29: World: Leading exporters of lithium carbonate, 2006, 2008, 2010 and 2012    231

Figure 30: World: Leading importers of lithium carbonate, 2006, 2008, 2010 and 2012    233

Figure 31: World: Leading exporters of lithium hydroxide and oxides, 2006, 2008, 2010 and 2012    235

Figure 32: World: Growth in consumption of lithium, 2000 to 2012    239

Figure 33: World: Consumption of lithium by end-use, 2012    240

Figure 34: World: Consumption of lithium by end-use, 2000 to 2012     241

Figure 35: World: Consumption of lithium by end-use, 2000 to 2012     241

Figure 36: World: Estimated consumption of lithium by country/region, 2002, 2007 and 2012     244

Figure 37: World: Consumption of lithium by product, 2012     245

Figure 38: World: Consumption of lithium by type, 2000 to 2012     247

Figure 39: World: Historical and forecast consumption of lithium by end-use, 2007 to 2017     248

Figure 40: World: Forecast consumption of lithium by form, 2007, 2012 and 2017     252

Figure 41: Specific energy and energy density of rechargeable batteries    253

Figure 42: Lithium-ion battery schematic    254

Figure 43: Lithium metal polymer battery schematic    256

Figure 44: Lithium-sulphur cell schematic    257

Figure 45: Lithium-air cell schematic    258

Figure 46: World: Production of rechargeable batteries1, 1995 to 2012     259

Figure 47: World: Production of rechargeable batteries1, 1995 to 2012     260

Figure 48: World: Rechargeable lithium battery production by country, 2000 to 2012     260

Figure 49: Lithium-ion battery materials value chain    263

Figure 50: World: Production of lithium cathode materials by type, 2000 to 2012    264

Figure 51: World: Market for rechargeable lithium batteries by end-use, 2002, 2007 and 2012     268

Figure 52: World: Market for rechargeable lithium batteries by end-use, 2012     269

Figure 53: World: Production of rechargeable batteries and consumption of lithium, 2000 to 2012    276

Figure 54: World: Market for rechargeable lithium batteries by end-use, 2002 to 2017     279

Figure 55: World: Ceramic tile production by region, 2007 and 2012     288

Figure 56: World: Sanitaryware production by region/country, 2010    291

Figure 57: World: Production of tableware by country/region, 2008    293

Figure 58: USA: Shipments of cookware, bakeware and kitchenware, 2001 to 2010    295

Figure 59: World: Shipments of white goods by region, 2000 to 2020    296

Figure 60: World: Year-on-year growth in construction spending and GDP, 2000 to 2017    298

Figure 61: World: Production of lubricating grease by additive type, 2011     312

Figure 62: World: Production of lubricating grease by type, 2000 to 2012    313

Figure 63: World: Production of lithium grease by region/country and by type,  2000 and 2011     314

Figure 64: World: Output of automobiles by region, 2000 to 2012    318

Figure 65: World: Deliveries of commercial aircraft, 2000 to 2012    318

Figure 66: World: Shipbuilding deliveries, 2000 to 2012    319

Figure 67: World: Relative industrial and transport output and lithium grease production, 2002 to 2011    320

Figure 68: World: Production of grease and consumption of lithium, 2000 to 2012    321

Figure 69: World: Estimated production of glass by type, 2012    326

Figure 70: World: Production of container glass by region/country, 2012    326

Figure 71: World: Consumption of glass packaging by region, 2011    327

Figure 72: World: Production of continuously cast steel by region, 1998 to 2012     335

Figure 73: World: Capacity for synthetic rubber production by country/region, 2012    340

Figure 74: World: Capacity for BR, ESBR and SSBR rubber by country/region, end-2011    341

Figure 75: World: SBC capacity by region/country, end-2010    341

Figure 76: World: Production of synthetic rubber by region, 1996 to 2011     342

Figure 77: World: Consumption of synthetic rubber by type, 2012    345

Figure 78: World: consumption of BR by end-use, 2010    346

Figure 79: World: Consumption of SBC by region/country, 2010    347

Figure 80: Consumption of SBC by end-use, 2007    347

Figure 81: World: Production of absorption chillers, 2003 to 2012    352

Figure 82: World: Consumption of lithium bromide in air treatment, 2001 to 2012    356

Figure 83: Specific energy and energy density of primary batteries    362

Figure 84: Primary and secondary battery gravimetric energy density    365

Figure 85: World: Production of primary lithium batteries by country, 1998 to 2012     366

Figure 86: Primary lithium battery schematics    370

Figure 87: World: Demand for lithium metal in primary batteries, 2000 to 2012    376

Figure 88: World: Aluminium output by type and lithium consumption, 2000 to 2012    383

Figure 89: World: Consumption of alkyd-based paints and coatings, 2010    390

Figure 90: Development of Al-Li alloys    392

Figure 91: World: Deliveries of commercial aircraft and lithium consumption, 2007 to 2019    399

Figure 92: Price history of lithium carbonate, 1990 to 2012    408

Figure 93: Compound annual prices of lithium minerals, 2000 to 2013     411

Figure 94: Prices for technical-grade lithium carbonate, 1999 to 2012     414

Figure 95: Prices for battery-grade lithium carbonate, 1999 to 2012     415

Figure 96: Comparison of lithium hydroxide and lithium carbonate prices, 2000 to 2012     418

Figure 97: Japan: Quarterly average import value of lithium hydroxide from the USA, 2008 to 2012     419

Figure 98: World: Forecast nominal prices for technical-grade lithium carbonate, 2012 to 2017     423

Figure 99: World: Forecast real prices for technical-grade lithium carbonate, 2012 to 2017     424

For further information on this report, please contact Robert Baylis (rbaylis@roskill.co.uk).

SOURCE Roskill Information Services

 

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Canadian Solar’s Partner Romano Wins Eskom Rooftop Project in Johannesburg

Posted on 15 May 2013 by Africa Business

About Eskom

Eskom generates approximately 95% of the electricity used in South Africa and approximately 45% of the electricity used in Africa. Eskom generates, transmits and distributes electricity to industrial, mining, commercial, agricultural and residential customers and redistributors. Additional power stations and major power lines are being built to meet rising electricity demand in South Africa. Eskom will continue to focus on improving and strengthening its core business of electricity generation, transmission, trading and distribution.  For more information, please visit www.eskom.co.za.

About Romano Group

The Romano Group is a multi-skilled provider of a broad range of sustainable solutions, to clients who are typically large commercial, industrial or retail property owners and tenants spread throughout Africa. Romano’s value-added offer includes the design, manufacture and installation of high-quality Solar PV, ECO-Lighting, Modular Construction and Signage & Print solutions, all of which are delivered on-time at a competitive price. The company celebrated its 60th birthday in 2012 and employs 150 people. For more information, please visit www.romano.co.za.

About Canadian Solar Inc.

Founded in 2001 in Canada, Canadian Solar Inc. (NASDAQ: CSIQ) is one of the world’s largest and foremost solar power companies. As a leading vertically integrated provider of solar modules, specialized solar products and solar power plants with operations in North America, South America, Europe, Africa, the Middle East, Australia and Asia, Canadian Solar has delivered more than 4GW of premium quality solar modules to customers in over 50 countries. Canadian Solar is committed to improve the environment and dedicated to provide advanced solar energy products, solutions and services to enable sustainable development around the world. For more information, please visit www.canadiansolar.com

 

JOHANNESBURG, May 15, 2013 /PRNewswire-FirstCall/ — Canadian Solar Inc. (NASDAQ: CSIQ) (the “Company” or “Canadian Solar”), one of the world’s largest solar companies, today announced the successful expansion of its partner Romano Sustainable Solutions in Africa. Romano, a pioneer company in the South African photovoltaic (PV) industry, was recently awarded the engineering, procurement and construction (EPC) contract for a 360 kW PV solar system installation. The roof top installation will be on the Johannesburg headquarters of Eskom, the largest producer of electricity in Africa.

As one of the most experienced solar PV systems integrators in Africa, Romano designs, manufactures and installs solar PV systems to commercial clients spread throughout Africa. Most of Romano’s solar PV systems are grid-tied systems. When connected to the client side of the on-site electrical sub-station, the electricity generated is used on the site by the client. When connected to the utility side the electricity generated is exported to the national or municipal electricity grid.

“We are very proud to be involved with this prestigious project for Eskom, which we understand was awarded on the basis of our technical capability and track record, as well as the cost effectiveness of our offer,” said Alexi Romano , CEO of Romano.

“The solar energy market in Africa continues to develop and has considerable potential for growth. We are positioned to benefit through our relationships with experienced partners like Romano. We look forward to supporting their growth in this important market, including the high profile Eskom project,” said Dr. Shawn Qu , Chairman and CEO of Canadian Solar.”

 

SOURCE Canadian Solar

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Gurwitch Products Debuts nyakio™, a New Founder-Driven Skincare Line Utilizing Beauty Secrets and Ingredients From Africa, Exclusively With HSN

Posted on 14 May 2013 by Africa Business

– Available Now on HSN.com –

NEW YORK, May 14, 2013 /PRNewswire/ – Gurwitch Products, a manufacturer and marketer of global prestige cosmetics and skincare brands, today announces the launch of nyakio™, a collection of skincare products formulated with luxurious and sophisticated ingredients indigenous to Africa. The brand’s founder and namesake, Nyakio Kamoche Grieco, is an American beauty entrepreneur of Kenyan descent who was inspired by her Kenyan family’s personal beauty secrets to create nyakio™. The nyakio™ assortment is available now for purchase exclusively on HSN.com and will debut on air, May 14.

“The launch of nyakio™ is the culmination of a dream to share my family’s beauty secrets through results-driven formulas that utilize the best natural African ingredients,” said Grieco.  “I am excited to join HSN’s roster of beauty authorities and to bring the rich sophistication of Africa to life for women everywhere.”

Just as Africa represents many cultures and ethnicities, nyakio™ products were formulated to benefit women of all ages, skin types and backgrounds.  Through its brand promise, ‘rich in heritage, effective for all skin … naturally™,’ nyakio™ products deliver highly effective skincare that hydrates, revitalizes and leaves all skin more youthful-looking.

The nyakio™ collection includes: nyakio™ Kenyan Coffee Face Polish, nyakio™ Kenyan Coffee Body Scrub, and nyakio™ Hydrating Face Oil with Kola Nut. The products range in price from $34-$55.  Additional products will be introduced in 2013, and all will be available for purchase on HSN and HSN.com.

“Like all of the beauty properties in the Gurwitch portfolio, nyakio™ is a founder-driven brand, with an authentic story and unique point of difference,” said Claudia Poccia , President and CEO of Gurwitch Products, whose portfolio also includes Laura Mercier cosmetics and ReVive skincare. “We look forward to partnering with HSN to bring Nyakio’s story directly to our target consumers, in a format that will allow them to develop a real connection with the brand and its founder.”

For additional information about nyakio™, visit @NyakioBeauty on Facebook, Twitter and Pinterest, or join in the conversation with HSN on HSN.com and @HSN on Facebook, Twitter, Pinterest and Instagram.

SOURCE Gurwitch Products

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

China and Russia commit to World Energy Congress

Posted on 14 May 2013 by Africa Business

“Most important energy event in the world this year”

SEOUL – May 14, 2013: The Chinese and Russian governments have committed to sending high-level delegations to the World Energy Congress in South Korea in October, organizers said.

The Organizing Committee for the 2013 World Energy Congress said it had been notified that China’s National Energy Administration (NEA) would send a ministerial-level delegation to the event and that the government body had advised Chinese energy companies of its plan to attend.

The Chinese delegation will be one of the largest to the Congress, which will host up to 5,000 delegates from around the world, organizers said.

The Committee further announced that Alexander Novak, the Minister of Energy of the Russian Federation, would lead a delegation that will include the Russian ministries of Natural Resources and Environment, and of Foreign Affairs, as well as Gazprom, Transneft, Rosneft, RusHydro, the State Atomic Energy Corporation and other major energy companies.

The Russian delegation is planning a “Russia Day” event at the Congress.

The World Energy Congress is the world’s premier energy gathering and will take place on 13–17 October in the city of Daegu.

More than 200 prominent speakers, including energy ministers, industry CEOs and top experts and researchers, will answer the most pressing questions facing the global energy industry today

Under the theme of ‘Securing Tomorrow’s Energy Today’, topics range from the future prospects of the oil & gas, coal, nuclear, and renewables sectors to the tough policy decisions needed to balance the often conflicting priorities of energy security, universal access to affordable energy, and environmental protection. Delegates will also be given insights into how finance and innovation are shaping our energy future.

“We are delighted with the decision by the governmental and industry leaders in China and Russia,” said Dr. Christoph Frei, Secretary General of the London-based World Energy Council, which hosts the triennial event. “Having just been in China and Russia I know that this high level participation in the Congress will provide a fascinating overview of the opportunities and challenges of our energy world in transition. Such engagement by the world’s biggest players is crucial for a meaningful event.”

“Both countries are in the centre of many critical energy developments. We want to understand, within the global energy transformation, whether there is a refocus of ambition within the respective governments,” he said.

“We look forward to hearing more about developments in Russia and the energy challenges and opportunities in China at the World Energy Congress in October,” said Cho Hwan-eik, Chair of the Organising Committee of the 2013 World Energy Congress.

He added: “This will be the first time in the 90-year history of the event that China will have participated in such a significant way. For both the Chinese and Russians now to commit to the Daegu event underscores the fact that the Congress is the most important event on the global energy calendar this year.”

The Organising Committee also confirmed that a number of other governments are currently planning significant activity for the Congress. Mr. Cho added, “The discussions we are having with many governments at this early stage in our planning only serve to highlight the importance of this global event being staged in the heart of Asia at a time of significant transition in the energy sector.”

Media Enquiries:

Organizing Committee, World Energy Congress

Inang Park

Tel: +82 (2) 739 7016

M: 010 3213 7465

Email: inang.park@insightcomms.com

John Burton

Tel: +82 (2) 739 7045

M: +82 (0)10 2437 6265

Email: john.burton@insightcomms.com

World Energy Congress – international

Seán Galvin

Tel: +44 (0)20 7269 7133

M: +44 (0)7788 568 245

Email: sean.galvin@fticonsulting.com

World Energy Council

Monique Tsang

Tel: +44 (0)20 3214 0616

Email: tsang@worldenergy.org

About the World Energy Congress

The World Energy Congress is the world’s premier energy gathering. The triennial World Energy Congress has gained recognition since the first event in 1923 as the premier global forum for leaders and thinkers to debate solutions to energy issues. In addition to the discussions, the event provides an opportunity for executives to display their technologies and explore business opportunities. With the upcoming Congress in Daegu the event will have been held in 20 major cities around the world since its founding.

Further details at www.daegu2013.kr and @WECongress

About the World Energy Council (WEC)

The World Energy Council (WEC) is the principal impartial network of leaders and practitioners promoting an affordable, stable and environmentally sensitive energy system for the greatest benefit of all. Formed in 1923, WEC is the UN-accredited global energy body, representing the entire energy spectrum, with more than 3000 member organisations located in over 90 countries and drawn from governments, private and state corporations, academia, NGOs and energy related stakeholders. WEC informs global, regional and national energy strategies by hosting high-level events, publishing authoritative studies, and working through its extensive member network to facilitate the world’s energy policy dialogue.

Further details at www.worldenergy.org and @WECouncil

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

WORLD ENERGY CONGRESS UNVEILS PROGRAM THEMES

Posted on 14 May 2013 by Africa Business

Ministers, CEOs and experts to address full range of energy issues

LONDON &SEOUL– 14th May 2013: The 2013 World Energy Congress Organizing Committee announced today some of the significant program topics that will be discussed by leading figures in the energy sector at the world’s premier energy event, to be held in Daegu, South Korea from October 13 to 17, 2013.

Under the theme of ‘Securing Tomorrow’s Energy Today’, topics range from the future prospects of the oil & gas, coal, nuclear, and renewables sectors to the tough policy decisions needed to balance the often conflicting priorities of energy security, universal access to affordable energy, and environmental protection. Delegates will also be given insights into how finance and innovation are shaping our energy future.

“The Congress will provide a fascinating overview of the opportunities and challenges of our energy world in transition,” said Dr. Christoph Frei, Secretary General of the World Energy Council. “The issues to be highlighted will be addressed from a number of viewpoints, encompassing the perspectives of individual energy sectors and geographical regions, as well as providing a strategic overview of global energy trends.”

More than 200 prominent speakers, including energy ministers, industry CEOs and top experts and researchers, will answer the most pressing questions facing the global energy industry today, such as:

· Oil: Will state oil companies and independents come to dominate the industry?

· Gas: Will shale gas be a game changer in redrawing the global energy map or is it just a bubble?

· Coal: Can demand for coal overcome environmental concerns?

· Renewables: Is the honeymoon over?

· Nuclear: Can effective international governance rules keep alive the nuclear renaissance?

· Hydro: Has its time finally come?

· Biofuels: What are the critical success factors for sustainable projects?

· Utilities: Will new business models succeed in promoting decentralization?

· Energy access: Is it achievable against the competing demands for water and food?

· Energy security: What are the next big energy sources?

· Environment mitigation: Are green growth and rapid economic growth compatible?

· Energy efficiency: Are yesterday’s cities fit for tomorrow’s energy?

· Finance: Is development finance delivering inclusive green growth?

· Energy innovation: Is venture capital more important than government support?

· Asia: Can the region become a showcase for green growth?

· Eurasia: Can it achieve partnerships to unlock its full energy potential?

· Middle East: Will it balance the needs of energy exports, local energy growth and job creation?

· Latin America: Blessed with resources, but overwhelmed by choice?

· Europe: Can it achieve effective energy market integration?

· Africa: Is there an energy infrastructure road map?

“The program at the 22nd World Energy Congress captures the full range and complexity of today’s energy challenges,” said Cho Hwan-eik, chair of the Organizing Committee of the 2013 World Energy Congress. “The Congress offers an impressive and unmatched list of speakers to provide insights on how these challenges can be addressed and overcome.”

Specific sessions and speakers will be announced shortly.

For further information, registration and other details, please log on to www.daegu2013.kr

Media Enquiries:

World Energy Congress – international

Seán Galvin

Tel: +44 (0)20 7269 7133

M: +44 (0)7788 568 245

Email: sean.galvin@fticonsulting.com

World Energy Council

Monique Tsang

Tel: +44 (0)20 3214 0616

Email: tsang@worldenergy.org

About the World Energy Congress

The World Energy Congress is the world’s premier energy gathering. The triennial World Energy Congress has gained recognition since the first event in 1923 as the premier global forum for leaders and thinkers to debate solutions to energy issues. In addition to the discussions, the event provides an opportunity for executives to display their technologies and explore business opportunities. With the upcoming Congress in Daegu the event will have been held in 20 major cities around the world since its founding.

Further details at www.daegu2013.kr and @WECongress

About the World Energy Council (WEC)

The World Energy Council (WEC) is the principal impartial network of leaders and practitioners promoting an affordable, stable and environmentally sensitive energy system for the greatest benefit of all. Formed in 1923, WEC is the UN-accredited global energy body, representing the entire energy spectrum, with more than 3000 member organisations located in over 90 countries and drawn from governments, private and state corporations, academia, NGOs and energy related stakeholders. WEC informs global, regional and national energy strategies by hosting high-level events, publishing authoritative studies, and working through its extensive member network to facilitate the world’s energy policy dialogue.

Further details at www.worldenergy.org and @WECouncil

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Denmark to launch new development programme for Zimbabwe

Posted on 14 May 2013 by Wallace Mawire

Denmark is planning to launch a new development programme in mid 2013 with substantial increase in budget  support for Zimbabwe, according to State Secretary of the Danish Ministry of Foreign Affairs, Mr L.B.Petersen who recently visited the southern African country.

Petersen’s visit which marked the highest ranking visit from Denmark in years was meant to facilitate high-level consultations covering a range of issues.  “The visit is also an opportunity to launch the first case of direct support from a traditional donor to the government of Zimbabwe.Denmark will on a pilot basis launch direct support to the Judicial Service Commission in their rehabilitation of magistrates courts,” Petersen said.

Denmark is one of the major bilateral donors in Zimbabwe with a long history in the country going way back to the Nordic solidarity during the struggle for independence.

Petersen said that his government plans to spend approximately $40 million a year to support the government of Zimbabwe in various areas.

“We are currently in the process of formulating a new Denmark-Zimbabwe partnership programme for 2013-2015. The increased size and budget of the new partnership programme is a testament of our continued support to development in this country,” he said.

He added that a key priority in the programme is to contribute to the reduction of gender based violence in Zimbabwe.

“We do this through support to projects and programmes which address specific needs and concerns of women exposed to gender based violence,” Petersen said.

Some of the support will be channeled towards the agricultural smallholder sector,employment creation,value chain creation,promotion of good governance,rule of law and support to civil society.

According to Petersen, the Danish government has previously supported the government of Zimbabwe with $15,2 million for infrastructure rehabilitation under the Zimbabwe Multi-Donor Trust Fund (ZMDTF).

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

CHINA, AFRICA EXPLORE NEW OPPORTUNITIES TO COOPERATE ON HEALTH CHALLENGES, STRENGTHEN INNOVATIONS

Posted on 13 May 2013 by Amat JENG

Chinese and African leaders will come together at the 4th International Roundtable on China-Africa Health Cooperation to explore new partnerships to address some of the most pressing health challenges facing Africa and strengthen an innovative health partnership based on south-south cooperation. This year’s roundtable is the first to take place on the African continent. It will focus on promoting sustainable health solutions that meet the needs and priorities of African countries and draw on China’s unique expertise.

Officials will engage in two days of sessions aimed at determining how China and African countries can jointly tackle critical issues such as AIDS, malaria, schistosomiasis, reproductive health, access to lifesaving vaccines and non-communicable diseases. These health issues disproportionately affect African countries and have also been major health challenges for China. At the roundtable, China’s Director General of the National Health and Family Planning Commission will join Health Ministers from Botswana and Ghana; leaders from the African Union; representatives from the United Nations and non-governmental organizations; and entrepreneurs and business owners from China and Africa.

“Indeed, China and Africa have a long history of collaborating on health, built on shared challenges, experiences and addressing similar issues,” said Hon. Rev. Dr. John G. N. Seakgosing, Botswana’s Minister of Health. “China has a unique role in supporting African health progress. And with this roundtable, we look forward to deepening our partnership to benefit the health of our citizens.”

This roundtable comes as China and Africa mark the 50th anniversary of providing medical teams to Africa, with China also supporting African health personnel, infrastructure, malaria control and other programs such as scholarships for training health experts. At this year’s roundtable, officials will discuss how to shape health cooperation between China and Africa and help achieve long-term, sustainable gains, such as strengthening health systems and addressing the shortage of healthcare workers.

“Africa’s future is closely linked with our own and improving health is a critical building block towards a common prosperity,” said Dr. Ren Minghui, Director General of the Department of International Cooperation at China’s National Health and Family Planning Commission. “African countries have made tremendous gains to improve the health of their citizens. With China and Africa working hand-in-hand on health, we can have even greater impact.”

A major theme of the roundtable is how African and Chinese officials can create win-win scenarios that will benefit all partners. Much of China’s health assistance invests in expanding African capacity, which can help strengthen the continent’s self-sufficiency and economic development. China has a unique role in supporting Africa’s health progress, drawing from its investments in health research and development and its experience improving the health of its own citizens, such as its current health reform effort, which is the largest expansion of healthcare coverage in history.

When other countries send weapons to Africa, China sends water. China is gaining reputation for helping African countries develop

Roundtable participants will discuss how African countries can best work with Chinese scientists and pharmaceutical manufacturers to increase access to high-quality, low-cost health technologies, while ensuring products are safe and meet international quality standards. Participants will also explore how China can help support Africa’s local production of health products. At the same time, African leaders will share expertise on areas where China can learn from Africa, such as around AIDS prevention and treatment, to help improve China’s efforts at home. Africa has been very successful in scaling up HIV treatment as well as prevention of mother-to-child transmission programs.

“South-South cooperation facilitates optimization of resources, both human and material. This creates opportunities to share knowledge and experience, which contributes to sustainable health solutions,” said H.E. Dr. Mustapha Sidiki Kaloko, Commissioner of Social Affairs of the African Union. “China-Africa health partnership is based on a sense of shared responsibility and global solidarity in responding to health challenges.”

The roundtable comes as China and other emerging economies are bringing new resources and approaches to improve the health of people around the world. “The global health landscape is changing, with more partners than ever joining these efforts,” said Dr. Luiz Loures, Deputy Executive Director of Programme of UNAIDS. “The AIDS response and other experiences paved the way for transformative progress on health and can help China and Africa engage on a whole new level and innovate on a broad range of health issues.”

The roundtable sessions will be guided by discussion papers that draw on extensive research and discussion developed by the China-Africa Health Cooperation Taskforce, comprised of members of the Chinese government and leading technical institutions, with the support of international partners including the World Health Organization, United Nations Population Fund (UNFPA), UNAIDS, PATH, the Bill & Melinda Gates Foundation, Global Health Strategies Initiatives (GHSi) and other organizations.

Facts you don't want to miss

The papers propose pilot projects for China-Africa collaboration in areas such as strengthening laboratory systems; establishing national control systems for malaria and schistosomiasis; transferring ARV drug manufacturing technology and technical support for local production; training African health personnel; and sharing China’s expertise in cold chain management and surveillance systems to boost immunization coverage. Sessions will also address ways to ensure transparency in these efforts and to guarantee high quality products.

“China has tremendous potential to support Africa’s long-term development by leveraging innovation. The roundtable is an opportunity to define a path for China and Africa to make a positive impact together on health,” said Dr. Ray Yip, Director of the China Program of the Gates Foundation.
One aim of the roundtable is to develop joint recommendations that could lay the groundwork for a long-term strategic plan for China-Africa health cooperation, which could be considered at the Ministerial Forum of China-Africa Health Development, part of the Forum on China-Africa Cooperation (FOCAC), which will take place in August in Beijing.

This year’s roundtable is hosted by the Botswana Ministry of Health, the China Chamber of Commerce of the Ministry of Commerce and the Institute for Global Health of Peking University. The roundtable series, organized by the Institute for Global Health and the China Institute of International Studies, began in 2009 as part of a China-led initiative to evaluate and improve its foreign assistance.

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

“Currently Africa represents only 3% of global electrical consumption, but by 2020 electrical consumption in Africa will have increased by 60%.”

Posted on 10 May 2013 by Africa Business

Exclusive interview with Rick St. John, Regional Director South Africa Region, Lucy Switchgear – a long-time supporter of African Utility Week and a silver sponsor at this year’s event.

Q. What are you most excited about currently in terms of Lucy Switchgear products and solutions?
A. This year we plan to launch a new generation of ring main units at the exhibition, to add to our large range of ground mounted and pole mounted switchgear for the secondary power distribution market.

Specifically designed to comply with South African requirements, the new Aegis 24Kv secondary distribution ring main units have vacuum circuit breakers insulated with SF6 gas in a hermetically sealed, stainless steel tank, ensuring reliability, safety and virtually maintenance-free operation. The range can be fitted with electronic relays or (TLF) time limit fuses for protection and each unit can be tailored with a number of options according to customers’ needs.

With the addition of our automation solutions, which provide a range of automation building blocks, from retro-fit equipment to a complete turnkey solution, the company is ready to meet the diverse and ever growing needs of the South African power distribution market.

Q. What is on the calendar for Lucy Switchgear in 2013?
A. We are developing a number of exciting products, which use cutting edge technology, to grow our product ranges in ring main units, overhead distribution switchgear, remote terminal units (RTU) for remote operation and control and SCADA automation software, to meet the changing needs of the global marketplace.

We are also expanding our training and consultancy offering to support companies during project planning and implementation, and offer dedicated after sales support throughout the product lifecycle.

Q. What opportunities do you see in Africa?
A. Currently Africa represents only 3% of global electrical consumption, but by 2020 electrical consumption in Africa will have increased by 60%. Increases in population density in cities and developments in infrastructure and industries will drive demand for electric power. This will represent a huge opportunity for companies that provide products and services to the electrical distribution and supply industry and we anticipate a significant increase in the demand for switchgear products.

Q. What do you think makes Lucy Switchgear competitive in this market?
A. Lucy Switchgear is a global leader in medium voltage, secondary distribution solutions, with over 100 years’ industry experience in engineering brilliant solutions for our customers. We design cost effective, safe and reliable products and solutions which meet our customers’ requirements.

Our global presence means we are able to support customers in markets across the world but alongside this we have also maintained our flexibility to work with customers, listening and responding to their needs. Our highly skilled engineers can customise products using cutting edge technology and our consultants can provide advice and support before during and after projects.

Q. What do you think are the biggest challenges to the South African/African energy/water market?
A As with most African countries, a shortfall of electrical generation capacity due to lack of investment is delaying the growth of markets.

Q. Why did you decide to become a sponsor of African Utility Week?
A. African Utility Week is the largest conference in Africa with most countries sending delegates, therefore being a sponsor is essential for exposure to the Electrical Utility companies attending.

We see Africa as a key growth market for Lucy Switchgear and we are committed to developing our business in the region. We are investing in new products that meet the specific needs of the marketplace and expanding our consultancy offering to support companies during project planning and implementation. We also offer training from our experienced technicians and dedicated after sales support throughout the product lifecycle.

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

City of Cape Town to share its water and sanitation vision and showcase facilities during African Utility Week

Posted on 10 May 2013 by Africa Business

“Demand will outstrip supply by 2019”

The City of Cape Town will showcase its world class water and sanitation facilities and share its strategic plans for the future of the City’s water services during next week’s African Utility Week and Clean Power Africa conference and exhibition.  As host city to this annual event, the City of Cape Town will welcome some 5000 power and water professionals to the CTICC from 14-15 May.

“Compared to other large municipalities in the country, the City of Cape Town is one of the best”, says Nicolette Pombo-van Zyl, the producer of the African Utility Week’s water track in the conference programme.  “The water and sanitation department is extremely pro-active in how it manages the city’s water resources, from bulk water through to the waste water systems.  There is a clear, very strategic and long-term vision to plan for the expansion of the city and cope with subsequent growth.  For example, the Faure Water Treatment Plant has one of the most advanced control centres in the Southern African hemisphere and frequently hosts delegations from international water professionals.  We look forward to sharing the city’s vision, as well as a glimpse into its facilities, with African Utility Week delegates next week.”

Demand will outstrip supply by 2019
According to the City of Cape Town’s Director of Water and Sanitation: Phil Mashoko, they have estimated that demand will outstrip supply in 2019 and that other sources must have been developed by then.  Says Mr Mashoko:  “we are working closely with the Department of Water Affairs to prioritise the next sources.  Options include water demand management, Voëlvlei off river dam raising, waste water reclamation, desalination, Lourens River, Table Mountain Group Acquifer (ground water), Steenbras Dam raising and effluent re-use.”

Jaco de Bruyn, Head: Integrated Planning, Strategy and Information Management at the department will address the water track at the African Utility Week conference on ”Strategic plans for water services in Cape Town”. Says Jaco:  “I will discuss how we run the Water and Sanitation business within the operating boundaries given to us.  We do this by strategic planning linking the City’s Vision and Strategic Focus Areas to our own Balanced Scorecard, following a risk-based approach to resource allocation and continuous outcomes measurement, with strong attention given to customer, stakeholder and staff.  Also, by staying financially viable while maintaining the balance between first world city development and social responsibility towards the indigent.”

He continues:  “we also ensure that adequate water resources are available for the metropolitan area, eliminating wastage and pollution is prevented.  The department furthermore plans for reduced energy consumption and global warming long-term impact.  We integrate our planning with the role players within and external to the City, increasingly making use of efficiency and empowering technology, including hydraulic models, GIS, remote monitoring, automation, real time measurement.”


African Utility Week site visit
As part of the African Utility Week technical site visit tours on 16 May, the City of Cape Town’s Water and Sanitation Department is hosting a tour which will showcase the full range of its facilities, some of them state of the art, to enable water professionals to enhance their learning.  The tour includes:

  • Athlone Wastewater Treatment Works: Treated Effluent Project
  • Epping Industria: Water and Sanitation Department’s AMR project
  • Mandalay: Pressure Management Project:  This $1 million water pressure management system in Mandalay, Mitchells Plain ranks as the third largest in the world. The system will mitigate damage to household plumbing appliances and pipes created by excessively high water pressures in pipes supplying consumers.
  • Faure Water Treatment Plant: Water Treatment Processes and Turbine Installation:  Faure Water Treatment Plant is one of the most sophisticated plants of its sort in the Southern African hemisphere and the flagship of the Cape Metropolitan Council’s (CMC) water treatment facilities. It has a design capacity to process 500 megalitres per day, and currently sources and treats between 200 and 400 megalitres from Riviersonderend and Firlands pump stations at the Steenbras Dam and distributes it to reservoirs in the area.
  • Fisantekraal: Wastewater Treatment Plant:  Featuring enhanced control centre system and use of ultraviolet light disinfection technology.  The City had been faced with serious development constraints in the northern parts of the city because the Bellville and Kraaifontein WWTWs were running out of spare capacity. Fisantekraal, officially opened in November 2012, features the most innovative and up-to-date electrical, control and instrumentation technology. The plant is an advanced biological reactor works with automated inlet screening and degritters, surface aerated biological reactors, secondary settling tanks, sludge dewatering system (linear screens and belt presses) and final effluent disinfection system. This latest plant is one of 23 WWTWs in the city and has the potential to be expanded as the need arises.

The African Utility Week expo is free to attend if visitors register online beforehand and there are more than 60 free, CPD-accredited technical workshops on the exhibition floor.  These practical courses are complimented by 250 global solution providers and manufacturers, in particular water companies Bentley Systems, Aqua-loc, AquaTrip, DIEHL Metering, Elster Kent Metering, Kamstrup, WEG-Wise, SA Leak Detection and many more.

African Utility Week
For the past 12 years, the African Utility Week conference and exhibition has helped to facilitate discussions around the opportunities in the power sector and has assisted in African utilities providing electricity and water to all of Africa. Co-located is Clean Power Africa, Africa’s leading event where major stakeholders from the renewable energy sector get together and explore clean generation as a feasible solution to fulfil Africa’s electricity needs.

African Utility Week dates and location:
Exhibition & Conference: 14-15 May 2013
Pre-conference Workshops: 13 May 2013

Site Visits: 16 May 2013
Location:  CTICC, Cape Town, South Africa

Websites: www.african-utility-week.com ; www.clean-power-africa.com


Contact:
Communications manager:  Annemarie Roodbol
Telephone:  +27 21 700 3558
mobile:  +27 82 562 7844
Email:  annemarie.roodbol@clarionevents.com

Bookmark and Share

Comments (0)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Business Opportunities and Franchise Expo Offers Celebrates its 20th Anniversary

Posted on 09 May 2013 by Africa Business

This year marks the 20th anniversary of one of South Africa’s most successful exhibitions for a niche, high value audience of aspiring and established entrepreneurs. The 20th annual Business Opportunities and Franchise Expo will take place from 12-15 September 2013 at the Coca-Cola dome in Northriding, Johannesburg.

According to Lynn Chamier, general manager of the Business Opportunities and Franchise Expo, “The expo’s success in the past two decades rests solely on its ability to marry entrepreneurs and investors with the best business opportunities available to them in the market at a given time”.

A proven formula and on-target efforts to keep its content and format current and relevant has resulted in a loyal core of exhibitors, who return each year to replicate the success of their previous experience exhibiting at this powerful expo. This pool of established exhibitors is refreshed annually with scores of new exhibitors with fresh ideas and business opportunities to share.

Included among these exhibitors are franchisors, established business opportunities across a range of industry sectors, companies offering business support services to entrepreneurs and established BEE businesses who come to showcase their products and services to corporate procurement officers with BEE targets to meet.

Chamier adds, “Today’s expo visitors typically have one of three agendas. Some come to find a business or franchise opportunity to invest in; others to seek BEE partners to meet their corporate BEE procurement quotas; and still others to find business support services, expertise and products”.

“All are goal-oriented, motivated and determined to find what they’re looking for at the show. They also value the ability to approach exhibitors directly and engage in one-on-one meetings with them to explore the opportunity being presented in greater depth and to forge relationships.”

Visitors can also look forward to participating in the expo’s programme of workshops, cut to the chase on topics of relevance, concern and importance to entrepreneurs.

Unmatched Marketing Opportunity

The Business Opportunities and Franchise Expo is currently accepting exhibitor bookings for the Johannesburg expo.

The expo offer exhibitors the chance to get straight to the core of their target audience; gaining unrivalled access and brand exposure to a high value audience of thousands of aspiring and established entrepreneurs and corporate procurement officers.

For further information for Johannesburg bookings, call Claire Taylor at Tel: (011) 549 8300 or email claire@tepg.co.za; www.tepg.co.za Join the Business Opportunities & Franchise Expo on Facebook and follow on Twitter @BOFExpo

Bookmark and Share

Comments (0)

AfricaBusiness.com Newsletter

* required

*



AfricaBusiness.com Newsletter



Business in UAE
Copyright © 2009 - 2016. African Business Environment. All Rights Reserved. AfricaBusiness.com Business Magazine